Citation:
QI Qiang, HUANG Mengbing, ZHANG Hai-Bin, SHI Li-Qun. Investigation of Helium Diffusion Behavior in Ti3SiC2 by 3He (d, p) 4He Nuclear Reaction[J]. Acta Physico-Chimica Sinica,
;2015, 31(S1): 54-58.
doi:
10.3866/PKU.WHXB2014Ac15
-
In fusion and fission energy devices, the first wall/cladding structure materials are in a harsh environment. The effect of hydrogen and helium produced by transmutation on the structural materials is one of the critical problems for future nuclear reactors. Ti3SiC2 is a high performance ceramic material that combines the advantages of ceramics and metals, and it has excellent resistance to irradiation damage. In this work, the helium diffusion constants and concentration profiles in Ti3SiC2 from 400 to 1100 ℃ were obtained using the resonant 3He (d, p) 4He nuclear reaction, and the helium diffusion behavior is also discussed. The concentration profiles were found to change because of the interaction between helium evolution and stress in the material.
-
-
-
[1]
(1) Oo, Z.; Low, I. M.; O'Connor, B. H. Physica B 2006, 385-386, 499.
-
[2]
(2) Barsoum, M.W. Prog. Solid State Chem. 2000, 28, 201. doi: 10.1016/S0079-6786(00)00006-6
-
[3]
(3) Gilbert, C. J.; Bloyer, D. R.; Barsoum, M.W.; El-Raghy, T.; Tomsia, A. P.; Ritchie, R. O. Scripta Mater. 2000, 42, 761. doi: 10.1016/S1359-6462(99)00427-3
-
[4]
(4) Barsoum, M.W.; El-Raghy, T.; Rawn, C. J.; Porter, W. D.; Wang, H.; Payzant, E. A.; Hubbard, C. R. J. Phys. Chem. Solids 1999, 60, 429. doi: 10.1016/S0022-3697(98)00313-8
-
[5]
(5) Gao, N. F.; Miyamoto, Y.; Zhang, D. Mater. Lett. 2002, 55, 61. doi: 10.1016/S0167-577X(01)00620-6
-
[6]
(6) El-Raghy, T.; Barsoum, M.W.; Zavaliangos, A.; Kalidindi, S. R. J. Am. Ceram. Soc. 1999, 82, 2855.
-
[7]
(7) Whittle, K. R.; Blackford, M. G.; Aughterson, R. D.; Moricca, S.; Lumpkin, G. R.; Riley, D. P.; Zaluzec, N. J. Acta Mater. 2010, 58, 4362. doi: 10.1016/j.actamat.2010.04.029
-
[8]
(8) Barsoum, M.W.; El-Raghy T. Am. Sci. 2001, 89, 334. doi: 10.1511/2001.28.736
-
[9]
(9) Kooi, B. J.; Poppen, R. J.; Carvalho, N. J. M.; De Hosson, J. T. M.; Barsoum, M.W. Acta Mater. 2003, 51, 2859.
-
[10]
(10) Costantini, J. M.; Trocellier, P.; Haussy, J.; Grob, J. J. Nucl. Instrum. Meth. B 2002, 195, 400. doi: 10.1016/S0168-583X(02)01137-0
-
[11]
(11) Costantini, J. M.; Grob, J. J.; Haussy, J.; Trocellier, P.; Trouslard, P. J. Nucl. Mater. 2003, 321, 281. doi: 10.1016/S0022-3115(03)00280-0
-
[12]
(12) Zielinski, F.; Costantini, J. M.; Haussy, J.; Durbin, F. J. Nucl. Mater. 2003, 312, 141. doi: 10.1016/S0022-3115(02)01589-1
-
[13]
(13) Dominique, G.; Patrick, T.; Yves, S. J. Nucl. Mater. 2002, 303, 115. doi: 10.1016/S0022-3115(02)00822-X
-
[14]
(14) Paszti, F. Nucl. Instrum. Meth. B 1992, 66, 83. doi: 10.1016/0168-583X(92)96143-M
-
[15]
(15) Qi, Q.; Cheng, G. J.; Shi, L. Q.; O'Connor, D. J.; King, B. V.; Kisi, E. H. Acta Mater. 2014, 66, 317. doi: 10.1016/j.actamat.2013.11.019
-
[16]
(16) Ziegler, J. F.; Biersack, J. P. The Stopping and Range of Ions in Matter (SRIM), SRIM 2010; http://www.srim.org.
-
[17]
(17) Mayer, J.W.; Rimini, E. Ion Beam Handbook for Material Analysis; Academic: New York, 1977.
-
[18]
(18) Biersack, J. P.; Haggmark, L. G. Nucl. Instrum. Meth. B 1980, 174, 257. doi: 10.1016/0029-554X(80)90440-1
-
[19]
(19) Ryssel, H.; Ruge, I. Ion Implantation;Wiley: Chichester, 1986.
-
[20]
(20) Philibert, J. Diffusion and Matter Transport in Solids; Philibert, J. Ed.; de Physique: Paris, 1985.
-
[21]
(21) Reed, D. J. Radiat. Effects 1977, 31, 129.
-
[22]
(22) Lewis, M. B.; Farell, K. Nucl. Instrum. Meth. B 1986, 16, 163. doi: 10.1016/0168-583X(86)90008-X
-
[23]
(23) Donnelly, S. E.; Evans, J. H. Eds. Fundamentals of Inert Gases in Solids; Plenum: New York, 1991.
-
[24]
(24) Vassen, R.; Trinkaus, H.; Jung, P. Phys. Rev. B 1991, 44, 4206. doi: 10.1103/PhysRevB.44.4206
-
[25]
(25) Jia, L. X.; Wang, Y. X.; Ou, X. D.; Shi, L.Q.; Ding, W. Mater. Lett. 2012, 83, 23. doi: 10.1016/j.matlet.2012.05.093
-
[26]
(26) Middleburgh, S. C.; Lumpkin, G. R.; Riley, D. P. J. Am. Ceram. Soc. 2013, 96, 3196.
-
[1]
-
-
-
[1]
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
-
[2]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[3]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[4]
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
-
[5]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[6]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[7]
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
-
[8]
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
-
[9]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[10]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[11]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[12]
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
-
[13]
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
-
[14]
Qinyu Zhao , Yunchao Zhao , Songjing Zhong , Zhaoyang Yue , Zhuoheng Jiang , Shaobo Wang , Quanhong Hu , Shuncheng Yao , Kaikai Wen , Linlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644
-
[15]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[16]
Bin Chen , Chaoyang Zheng , Dehuan Shi , Yi Huang , Renxia Deng , Yang Wei , Zheyuan Liu , Yan Yu , Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468
-
[17]
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
-
[18]
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
-
[19]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[20]
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
-
[1]
Metrics
- PDF Downloads(261)
- Abstract views(1159)
- HTML views(33)