Citation: ZHONG Jing-Rong, SHAO Lang, YU Chun-Rong, REN Yi-Ming. Study of Thermal Chemical Reactio[J]. Acta Physico-Chimica Sinica, ;2015, 31(S1): 25-31. doi: 10.3866/PKU.WHXB2014Ac08 shu

Study of Thermal Chemical Reactio

  • Corresponding author: REN Yi-Ming, 
  • Fund Project: 中国工程物理研究院科学技术发展基金(2014B0301050)资助项目 (2014B0301050)

  • We have preliminarily developed the experimental study of UF4 and its thermal chemical reaction characteristics in environmental atmospheres such as air, O2, and hydrated O2. Various analytical techniques such as micro-laser Raman spectroscopy (MLRS), X-ray photoelectron spectroscopy (XPS), and metallography were used. Based on the physical and chemical properties of UF4, we obtained the Raman and XPS spectra of different uranium compounds after heating at specific temperatures for specific times. The experimental results indicate that UF4 is stable up to 200 ℃ in various atmospheres. Raman spectra were almost unchanged. However, above 250 ℃, the surface color of UF4 changed significantly. Raman spectrum and XPS analyses showed that a variety of uranium compounds such as UO2, UO2F2, and U3O8 were formed. In this work, we calculated the apparent activation energies of the reactions of UF4 with active gases in the environment, and studied the relationship between the reaction rate and temperature in detail.
  • 加载中
    1. [1]

      (1) Katz, J. J.; Rabinowitz, E. The Chemistry of Uranium; McGraw-Hill Book Co. Ltd.: New York, 1951.

    2. [2]

      (2) Cordfunke, E. H. P. The Chemistry of Uranium; Elsevier Publ Co.: Amsterdam-London-New York, 1969.

    3. [3]

      (3) Walker, S. M.; Halasyamani, P. S.; Allen, S. J. Am. Chem. Soc. 1999, 121, 10513. doi: 10.1021/ja992145f

    4. [4]

      (4) Ludwing, F. J.; Kennelley, J. A. The Pyrohydrolysis of Green Salt; USAEC Rep MCW-1419, 1958.

    5. [5]

      (5) Matae, I.; Niro, I. J. Nucl. Sci. Technol. 1983, 20 (5), 400. doi: 10.1080/18811248.1983.9733409

    6. [6]

      (6) Song, W. D. Study on Kinetics Mechanism of Pyrohydrolysis Reaction about UF4 and UO2F2 with Steam-Gas; Technological Information Institute of China: Beijing, 1965. [宋维端. UF4 和 UO2F2 与过热蒸汽作用的动力学机理的研究. 北京: 中国科技情报研究所, 1965.]

    7. [7]

      (7) Kang, S. F.; Zhao, J. Journal of Nuclear and Radiochemistry 1998, 20 (4), 202. [康仕芳, 赵君. 核化学与放射化学, 1998, 20 (4), 202.]

    8. [8]

      (8) Dong, X. Y.; Zheng, X. B.; Song, Y. L. Journal of Nuclear and Radiochemistry 2014, 36 (3), 181. [董晓雨, 郑小北, 宋昱龙. 核化学与放射化学, 2014, 36 (3), 181.]

    9. [9]

      (9) Wu, J. G. Recent Advances and Application in Technology of Fourier Transform Infrared Spectroscopy; Science Techniques and Literature Press: Beijing, 1994. [吴瑾光. 近代傅里叶变换红外光谱技术及应用(上册). 北京: 科学技术文献出版社, 1994.]

    10. [10]

      (10) Chu, M. F.; Zou, L. X.; Zhong, J. R. Chinese Journal of Rare Metals 2005, 29 (1), 106. [褚明福, 邹乐西, 仲敬荣. 稀有金属, 2005, 29 (1), 106.]

    11. [11]

      (11) Ruan, C.; Luo, W.; Wang, W. Analytica Chimica Acta 2007, 605, 80. doi: 10.1016/j.aca.2007.10.024

    12. [12]

      (12) Siekhaus, W. J. Composition of Uranium Oxide Surface Layers Analyzed by μ-Raman Spectroscopy; UCRL-CONF-201179, 2003.

    13. [13]

      (13) Zhong, J. R.; Chu, M. F.; Xiao, S. Journal of Nuclear and Radiochemistry 2010, 23 (1), 27. [仲敬荣, 褚明福, 肖洒. 核化学与放射化学, 2010, 23 (1), 27.]

    14. [14]

      (14) Zhong, J. R.; Xiao, S.; Chu, M. F. China Measurement & Test 2009, 35 (2), 112. [仲敬荣, 肖洒, 褚明福. 中国测试, 2009, 35 (2), 112.]

    15. [15]

      (15) Chu, M. F.; Meng, D. Q.; Zou, L. X. Rare Metal Materials and Engeering 2009, 38 (4), 627. [褚明福, 蒙大桥, 邹乐西. 稀有金属材料与工程, 2009, 38 (4), 627.]

    16. [16]

      (16) Nagelberg, A. S.; Ottesen, D. K. Corrosion Behavior of Lean Uranium-Titanium Alloys; SAND80-8215, 1980.

    17. [17]

      (17) Yu, B. Z.; Hansen, W. N. Mikrochim. Acta 1988, I, 189.

    18. [18]

      (18) Caculitan, N.; Siekhaus, W. J. The Growth of Epitaxial Uranium Oxide Observed by Micro-Raman Spectroscopy; UCRL-CONF-217799, 2005.

    19. [19]

      (19) Lefevre, G.; Kneppers, J.; Fedoroff, M. J. Colloid Interface Sci. 2008, 327, 15. doi: 10.1016/j.jcis.2008.07.044

    20. [20]

      (20) Roeper, D. F.; Chidambaram, D.; Halada, G. P. Electrochimica Acta 2006, 51, 4815. doi: 10.1016/j.electacta.2006.01.027

    21. [21]

      (21) Liu, S. H.; Wang, D. H.; Pan, C. H. X-ray Photoelectron Spectra Analysis; Science Press: Beijing, 1980. [刘世宏, 王当憨, 潘承璜. X 射线光电子能谱分析. 北京: 科学出版社, 1980.]

    22. [22]

      (22) Pointurier, F.; Marie, O. Spectrochimica Acta Part B 2010, 65, 797. doi: 10.1016/j.sab.2010.06.008

    23. [23]

      (23) Anderson, S. P. A Study of the Hydrolysis of Uranium Hexafluoride by Fourier Transform Infrared Spectroscopy; DE85 012871, 1985.

    24. [24]

      (24) Bostick, W. D.; McCulla, W. H.; Pickrell, P.W. Sampling, Characterization, and Remote Sensing of Aerosols Formed in the Atmospheric Hydrolysis of Uranium Hexafluoride; DE86 006341, 1984.

    25. [25]

      (25) Zuo, C. M.; Zhao, C. P.; Wang, X. L. Transaction of Sichuan University (Natural Science) 1998, 35 (3), 424. [左长明, 赵纯培, 汪小琳. 四川大学学报(自然科学版), 1998, 35 (3), 424.]

    26. [26]

      (26) Wang, X. L.; Fu, Y. B.; Xie, R. S. Nuclear Techniques 1997, 20 (4), 210. [汪小琳, 傅依备, 谢仁寿. 核技术, 1997, 20 (4), 210.]

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    8. [8]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    14. [14]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    17. [17]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    18. [18]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(366)
  • Abstract views(885)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return