Citation:
AO Bing-Yun, YE Xiao-Qiu, CHEN Pi-Heng. Progress in Theoretical Research on Plutonium-Based Solid-State Materials[J]. Acta Physico-Chimica Sinica,
;2015, 31(S1): 3-13.
doi:
10.3866/PKU.WHXB2014Ac01
-
As the most complex element, plutonium and its compounds have long been intensively studied and a large number of remarkable scientific breakthroughs have been reported frequently in the literature. However, modern-day problems concerning plutonium involve predicting its properties under long-term aging in storage environments. Because of its high chemical activity and strong α radioactive decay, plutonium is vulnerable to chemical and physical aging, which can produce macroscopic effects such as surface corrosion, swelling, and degradation of its mechanical properties. Unfortunately, plutonium is one of the most unusual metals and even the most extensively studied plutonium phase diagram, electronic structure and surface structure have been controversial to date. Therefore, developing a predictive aging model for plutonium is a major goal for many laboratories internationally. Such predictions require multi-scale modeling, which until now has not existed. In this paper, progress in theoretical investigations on plutonium, especially first-principles calculations of its electronic structure and atomic-scale simulation of self-radiation damage, is briefly reviewed. Moreover, the feasibility of various density functional theory (DFT) calculations and atomic-scale simulation methods used in plutonium-based solid-state materials studies is discussed. Finally, future directions in this research field are presented.
-
-
-
[1]
(1) Wang, D. Q.; Su, J.; Wu, J. Y.; Li, J.; Chai, Z. F. Radiochim. Acta 2014, 102, 13.
-
[2]
(2) Wang, D. Q.; van Gunsteren, W. F. Prog. Chem. 2011, 23, 1566. [王东琪, van Gunsteren, W. F. 化学进展, 2011, 23, 1566.]
-
[3]
(3) Liu, W. J. Prog. Chem. 2007, 19, 833. [刘文剑. 化学进展, 2007, 19, 833.]
-
[4]
(4) Chen, P. H.; Lai, X. C.; Wang, X. L. Prog. Chem. 2011, 23, 2316. [陈丕恒, 赖新春, 汪小琳. 化学进展, 2011, 23, 2316.]
-
[5]
(5) Moore, K. T.; Laan, G. V. Rev. Mod. Phys. 2009, 81, 235. doi: 10.1103/RevModPhys.81.235
-
[6]
(6) Proceeding of the International Conferences "Plutonium Future- The Science", American Institute of Physics, 1997, 2000, 2003, 2006, 2008, 2010, 2012, 2014.
-
[7]
(7) Cooper, N. G. Challenges in Plutonium Science; Los Alamos National Laboratory: Los Alamos, New Mexico, USA, 2000.
-
[8]
(8) Albers, R. C. Nature 2001, 410, 759. doi: 10.1038/35071205
-
[9]
(9) Söderlind, P.; Kotliar, G.; Haule, K. MRS Bull. 2010, 35, 883. doi: 10.1557/mrs2010.715
-
[10]
(10) Zinkle, S. J.; Was, G. S. Acta Mater. 2013, 61, 735. doi: 10.1016/j.actamat.2012.11.004
-
[11]
(11) Wen, X. D.; Martin, R. L.; Henderson, T. M.; Scuseria, G. E. Chem. Rev. 2013, 113, 1063.
-
[12]
(12) Zhang, P.; Wang, B. T.; Zhao, X. G. Phys. Rev. B 2010, 82, 144110. doi: 10.1103/PhysRevB.82.144110
-
[13]
(13) Dai, X.; Savrasov, S. Y.; Kotliar, G.; Migliori, A. Science 2003, 300, 953. doi: 10.1126/science.1083428
-
[14]
(14) Wong, J.; Krisch, M.; Farber, D. L. Science 2003, 301, 1078. doi: 10.1126/science.1087179
-
[15]
(15) Shim, J. H.; Haule, K.; Kotliar, G. Nature 2007, 446, 513. doi: 10.1038/nature05647
-
[16]
(16) Zhu, J. X.; Albers, R. C.; Haule, K.; Kotliar, G.; Wills, J. M. Nat. Commun. 2013, 4, 2644.
-
[17]
(17) Baskes, M. I. Phys. Rev. B 2000, 62, 15532. doi: 10.1103/PhysRevB.62.15532
-
[18]
(18) Valone, S. M.; Baskes, M. I.; Martin, R. L. Phys. Rev. B 2006, 73, 214209. doi: 10.1103/PhysRevB.73.214209
-
[19]
(19) Wirth, B. D.; Schwartz, A. J.; Fluss, M. J. MRS Bull. 2001, 26, 679. doi: 10.1557/mrs2001.177
-
[20]
(20) Robinson, M.; Kenny, S. D.; Smith, R.; Storr, M. T.; McGee, E. Nucl. Instr. Meth. Phys. Res. B 2009, 267, 2967. doi: 10.1016/j.nimb.2009.06.113
-
[21]
(21) Ao, B. Y.; Chen, P. H.; Shi, P.; Wang, X. L.; Hu, W. Y.; Wang, L. Commun. Comput. Phys. 2012, 4, 1205.
-
[22]
(22) Dremov, V. V.; Sapozhnikov, F. A.; Samarin, S. I.; Modestov, D. G.; Chizhkova, N. E. J. Alloy. Compd. 2007, 444-445, 197.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[3]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[4]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[7]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[8]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[9]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[10]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[11]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[12]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[13]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[14]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[15]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[16]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[17]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[18]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[19]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[20]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[1]
Metrics
- PDF Downloads(440)
- Abstract views(970)
- HTML views(72)