Citation:
HUANG Hao-Jie, XU Jiang. First-Principles Study into the Effect of Substitutional Al Alloying on the Mechanical Properties and Electronic Structure of D88-Ti5Si3[J]. Acta Physico-Chimica Sinica,
;2015, 31(2): 253-260.
doi:
10.3866/PKU.WHXB201412242
-
The influence of the substitution of Al for Si on the structural stability and mechanical properties of D88-Ti5Si3 was determined using first-principles pseudopotential plane-wave methods based on density functional theory. Several parameters including formation enthalpies ((ΔHf), cohesive energies (ΔEcoh), bulk modulus (B), shear modulus (G),Poisson's ratio (ν), Cauchy's pressure (C12-C66,C13-C44), metallicity (fm), and Peierls stress (τP-N) were calculated. To develop a better understanding of the effects of substitutional Al alloying on the toughness/brittleness of D88-Ti5Si3 from an electronic structure point of view the density of states, charge density differences and Mulliken population were determined. The results show that the intrinsic brittleness of D88-Ti5Si3 comes from strong covalent bonding between Ti6g and Si6g.When one or two Ti atoms occupy Si sites in the D88- Ti5Si3 crystal the intensity of covalent bonding between Ti6g and Si6g is reduced and the metallicity increases. This is accompanied by the presence of low intensity Al6g―Si6g, Ti6g―Al6g, and Ti4d―Al6g bonds. However, when three Ti atoms occupy Si sites in the D88-Ti5Si3 crystal the Al6g―Si6g bonds disappear and the intensity of covalent bonding between Ti6g and Si6g increases leading to an increase in brittleness.
-
-
-
[1]
(1) Stoloff, N. S. Mater. Sci. Eng. A 1999, 261, 169. doi: 10.1016/S0921-5093(98)01063-6
-
[2]
(2) Mitra, R.; Prasad, N. E.; Mahajan, Y. R. Trans. Indian Inst. Met. 2008, 61, 427. doi: 10.1007/s12666-008-0075-5
-
[3]
(3) Dimiduk, D. M.; Miracle, D. B.;Ward, C. H. Mater. Sci. Technol. 1992, 8, 367. doi: 10.1179/mst.1992.8.4.367
-
[4]
(4) Williams, J. J.; Kramer, M. J.; Akinc, M. J. Mater. Res. 2000, 15, 1780. doi: 10.1557/JMR.2000.0257
-
[5]
(5) Mitra, R. Metall. Mater. Trans. A 1998, 29, 1629. doi: 10.1007/s11661-998-0086-1
-
[6]
(6) Schneibel, J. H.; Rawn, C. J. Acta Mater. 2004, 52, 3843. doi: 10.1016/j.actamat.2004.04.033
-
[7]
(7) Zhang, L. T.;Wu, J. S. Scripta Materialia 1998, 38, 307.
-
[8]
(8) Ikarashi, Y.; Ishizaki, K.; Nagai, T.; Hashizuka, Y.; Kondo,Y. Intermetallics 1996, 4, 141. doi: 10.1016/0966-9795(96)80193-2
-
[9]
(9) Jiang, C.; Sordelet, D. J.; Gleeson, B. A. Scripta Mater. 2006, 54, 405. doi: 10.1016/j.scriptamat.2005.10.023
-
[10]
(10) Djajaputra, D.; Cooper, B. R. Phys. Rev. B 2002, 66, 205108. doi: 10.1103/PhysRevB.66.205108
-
[11]
(11) Jiang, C. Acta Mater. 2008, 56, 6224. doi: 10.1016/j.actamat.2008.08.047
-
[12]
(12) Qiao, Y, J.; Zhang, H. X.; Hong, C. Q.; Zhang, X. H. J. Phys. D: Appl. Phys. 2009, 42, 105413. doi: 10.1088/0022-3727/42/10/105413
-
[13]
(13) Waghmare, U. V.; Kaxiras, E.; Bulatov, V. V.; Duesbery, M. S. Modell. Simul. Mater. Sci. Eng. 1998, 6, 493. doi: 10.1088/0965-0393/6/4/013
-
[14]
(14) Fu, C. L.;Wang, X. D. Philos. Mag. Lett. 2000, 80, 683. doi: 10.1080/09500830050143787
-
[15]
(15) Fu, C. L.;Wang, X. D.; Ye, Y. Y.; Ho, K. M. Intermetallics 1999, 7, 179. doi: 10.1016/S0966-9795(98)00018-1
-
[16]
(16) Wang, H. Y.; Si,W. P.; Li, S. L.; Zhang, N.; Jiang, Q. C. J. Mater. Res. 2010, 25, 2317. doi: 10.1557/jmr.2010.0293
-
[17]
(17) Segall, M. D.; Lindan, P. J.; Probert, M. A.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys .: Condens. Matter 2002, 14, 2717. doi: 10.1088/0953-8984/14/11/301
-
[18]
(18) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671
-
[19]
(19) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. doi: 10.1103/PhysRevB.41.7892
-
[20]
(20) Fischer, T. H.; Almlof, J. J. Phys. Chem. 1992, 96, 9768. doi: 10.1021/j100203a036
-
[21]
(21) Williams, J. J.; Ye, Y. Y.; Kramer, M. J.; Ho, K. M.; Hong, L.; Fu, C. L.; Malik, S. K. Intermetallics 2000, 8, 937. doi: 10.1016/S0966-9795(00)00064-9
-
[22]
(22) Born, M.; Huang, K.; Lax, M. Am. J. Phys. 1955, 23, 474.
-
[23]
(23) Kishida, K.; Fujiwara, M.; Adachi, H.; Tanaka, K.; Inui, H. Acta Mater. 2010, 58, 846. doi: 10.1016/j.actamat.2009.09.062
-
[24]
(24) Yang, F.; Fan, T.W.;Wu, J.; Tang, B. Y.; Peng, L. M.; Ding,W. J. Phys. Status Solidi B 2011, 248, 2809. doi: 10.1002/pssb.201147247
-
[25]
(25) Brazhkin, V. V.; Lyapin, A. G.; Hemley, R. J. Philos. Mag. A 2002, 82, 231. doi: 10.1080/01418610208239596
-
[26]
(26) Raja palan, M. Physica B 2013, 413, 1. doi: 10.1016/j.physb.2012.12.029
-
[27]
(27) Jhi, S. H.; Ihm, J.; Louie, S. G.; Cohen, M. L. Nature 1999, 399, 132. doi: 10.1038/20148
-
[28]
(28) Xu, J.;Wu, J. D.; Lai, D. H.; Xie, Z. H.; Munroe, P. Mater. Sci. Technol. 2012, 28, 1337. doi: 10.1179/1743284712Y.0000000069
-
[29]
(29) Pugh, S. F. Philos. Mag. 1954, 45, 823. doi: 10.1080/14786440808520496
-
[30]
(30) Pettifor, D. G. Mater. Sci. Technol. 1992, 8, 345. doi: 10.1179/mst.1992.8.4.345
-
[31]
(31) Lu, G. The Peierls-Nabarro Model of Dislocations: AVenerable Theory and Its Current Development. In Handbook of Materials Modelinged; Springer: Amsterdam, 2005; pp 793-811.
-
[32]
(32) Chen, X. J.; Zeng, M. X.;Wang, R. N.; Mo, Z. S.; Tang, B. Y.; Peng, L. M.; Ding,W. J. Comput. Mater. Sci. 2012, 54, 287. doi: 10.1016/j.commatsci.2011.10.042
-
[33]
(33) Ekman, M.; Ozolin, V. Phys. Rev. B 1998, 57, 4419. doi: 10.1103/PhysRevB.57.4419
-
[34]
(34) Ravindran, P.; Nordstrom, L.; Ahuja, R.;Wills, J. M.; Johansson, B.; Eriksson, O. Phys. Rev. B 1997, 57, 2091.
-
[35]
(35) Ravindran, P.; Subramoniam, G.; Asokamani, R. Phys. Rev. B 1995, 53, 1129.
-
[36]
(36) Wang, Y. J.;Wang, C. Y. Appl. Phys. Lett. 2009, 94, 261909. doi: 10.1063/1.3170752
-
[37]
(37) Li, Y. F.; Gao, Y. M.; Xiao, B.; Min, T.; Fan, Z. J.; Ma, S. Q.; Xu, L. L. J. Alloy. Compd. 2010, 502, 28. doi: 10.1016/j.jallcom.2010.04.184
-
[38]
(38) Greenberg, B. A.; Antonova, O. V.; Indenbaum, V. N.; Karkina, L. E.; Notkin, A. B.; Ponomarev, M. V.; Smirnov, L. V. Acta Metall. Mater. 1991, 39, 233. doi: 10.1016/0956-7151(91)90271-2
-
[1]
-
-
-
[1]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[2]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[3]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[4]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[5]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[6]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[7]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[8]
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
-
[9]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[10]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[11]
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
-
[12]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[13]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[14]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[15]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[16]
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
-
[17]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[18]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[19]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[20]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[1]
Metrics
- PDF Downloads(280)
- Abstract views(482)
- HTML views(17)