Citation: FANG Hong-Xia, ZHANG Qi, ZHANG Hui-Li, DU Yong, HONG Zhi. Terahertz Spectroscopic Analysis of Adenine and Fumaric Acid Cocrystals[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 221-226. doi: 10.3866/PKU.WHXB201412232
-
The absorption spectra of adenine, fumaric acid, and their cocrystal were measured using terahertz time-domain spectroscopy (THz-TDS) at room temperature. Experimental results show that they all have distinct fingerprint spectra in the terahertz region. The absorption peaks observed in the terahertz spectra of the cocrystal were at 0.92, 1.24, and 1.52 THz. These are very different from the corresponding reagents. Based on the characteristic hydrogen donor and/or acceptor behavior of adenine, density functional theory (DFT) was used to simulate three possible theoretical cocrystal structures with a focus on hydrogen bond formation between adenine and fumaric acid. The theoretical result shows that one of three possible simulated cocrystal structures had absorption peaks at 0.89, 1.16, and 1.41 THz, which is in agreement with the terahertz experimental result. Therefore, the structure of the cocrystal was confirmed wherein the first hydrogen bond is formed between the amino group of adenine and the hydroxyl group of fumaric acid. The second hydrogen bond is formed between the nitrogen atom of the nitrogen ring in adenine and the carbonyl group of fumaric acid. The characteristic absorption bands of the cocrystal between adenine and fumaric acid are also assigned based on the simulation results from the DFT calculation.
-
-
[1]
(1) Verma, R. P.; Hansch, C. J. Pharm. Sci. 2008, 97 (1), 88.
-
[2]
(2) Ohara, K.; Smeitana, M.; Restouin, A.; Mollard, S.; Borg, J. P.; Collette, Y.; Vasseur, J. J. J. Med. Chem. 2007, 50 (26), 6465. doi: 10.1021/jm701207m
-
[3]
(3) Song, Y. L.; Li, Y. L.;Wu, Z. Y. J. Inorg. Biochem. 2008, 102 (9), 1691. doi: 10.1016/j.jinorgbio.2008.04.005
-
[4]
(4) Thompson, L. J.; Elias, N.; Male, L.; Tremayne, M. Cryst. Growth Des. 2013, 13 (4), 1464. doi: 10.1021/cg301561j
-
[5]
(5) Byres, M.; Cox, P. J.; Kay, G.; Nixon, E. CrystEngComm 2009, 11 (1), 135. doi: 10.1039/b811243f
-
[6]
(6) Perumalla, S. R.; Suresh, E.; Pedireddi, V. R. Angew. Chem. Int. Edit. 2005, 44 (47), 7752.
-
[7]
(7) Du, L. C.; Zeng,W. L.; Liu, X. Y.; Jian, F. F. Acta Crystallogr., Sect. E: Struct. Rep. Online 2009, 65 (Suppl. 8), o1791.
-
[8]
(8) Sridhar, B.; Ravikumar, K.; Varghese, B. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2009, 65 (Suppl. 5), o202.
-
[9]
(9) McHugh, C.; Erxleben, A. Cryst. Growth Des. 2011, 11 (11), 5096. doi: 10.1021/cg201007m
-
[10]
(10) Hanus, M.; Kabelacek, M.; Rejnek, J.; Ryjacek, F.; Hobza, P. J. Phys. Chem. B 2004, 108 (6), 2087. doi: 10.1021/jp036090m
-
[11]
(11) Lin, J.; Yu, C.; Peng, S.; Akiyama, I.; Li, K.; Lee, L. K.; LeBreton, P. R. J. Am. Chem. Soc. 1980, 102 (14), 4627. doi: 10.1021/ja00534a010
-
[12]
(12) Dreyfus, M.; Dodin, G.; Bensaude, O.; Dubois, J. E. J. Am. Chem. Soc. 1975, 97 (9), 2369. doi: 10.1021/ja00842a011
-
[13]
(13) Gu, J. D.; Leszczynski, J. J. Phys. Chem. A 1999, 103 (15), 2744. doi: 10.1021/jp982713y
-
[14]
(14) Huang, Y. Q.; Kenttamaa, H. J. Phys. Chem. A 2004, 108 (20), 4485. doi: 10.1021/jp0312767
-
[15]
(15) Xu, J. Z.; Zhang, X. C. Technology and Applications of Terahertz Wave; Peking University Press: Beijing, 2007; pp 1-5. [许景周, 张希成. 太赫兹波科学技术与应用. 北京: 北京大学出版社, 2007: 1-5]
-
[16]
(16) Du, Y.; Xia, Y.; Zhang, H. L.; Hong, Z. Spectrochim. Acta A 2013, 111, 192. doi: 10.1016/j.saa.2013.03.081
-
[17]
(17) Nguyen, K. L.; Friscic, T.; Day, G. M.; Gladden, L. F.; Jones,W. Nat. Mater. 2009, 6 (3), 206
-
[18]
(18) Yang, C. X.;Wang, J.; Zhang, Z.W. Spectrosc. Spec. Anal. 2011, 31 (9), 2476. [杨彩霞, 王静, 张振伟. 光谱学与光谱分析, 2011, 31 (9), 2476.]
-
[19]
(19) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision E.01; Gaussian, Inc.:Wallingford, CT, 2004.
-
[20]
(20) Axel, D. B. J. Chem. Phys. 1993, 98, 5648.
-
[21]
(21) Scoot, P.; Radom, L. J. Chem. Phys. 1996, 100, 16502.
-
[22]
(22) Zhao, R. J.; He, J. L.; Li, J.; Guo, C. S.; Du, Y.; Hong, Z. Acta Phys. -Chim. Sin. 2011, 27 (12), 2743. [赵容娇, 何金龙, 李璟, 郭昌盛, 杜勇, 洪治. 物理化学学报, 2011, 27 (12), 2743.] doi: 10.3866/PKU.WHXB20112743
-
[23]
(23) Gao, Y.; Zhu, H.; Zhang, J. J. Prog. Chem. 2010, 22 (5), 829. [高缘, 祖卉, 张建军. 化学进展, 2010, 22 (5), 829.]
-
[24]
(24) Brown, C. J. Acta Crystallogr. 1966, 21, 1.
-
[25]
(25) Yu, B.; Zeng, F.; Yang, Y.; Xing, Q.; Chechin, A.; Xin, X.; Zeylikovich, I.; Alfano, R. R. Biophys. J. 2004, 86, 1649.
-
[26]
(26) Perumalla, S. R.; Suresh, E ; Pedireddi, V. R. Angew. Chem. Int. Edit. 2005, 44, 7752.
-
[1]
-
-
[1]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[4]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[5]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[6]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[7]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[8]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[9]
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
-
[10]
Jiarui Wu , Gengxin Wu , Yan Wang , Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014
-
[11]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[12]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[13]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[14]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[15]
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
-
[16]
Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003
-
[17]
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
-
[18]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[19]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[20]
Haiying Wang , Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004
-
[1]
Metrics
- PDF Downloads(329)
- Abstract views(856)
- HTML views(53)