Citation: ZHU Yu-Feng, CAO Zan-Xia, ZHAO Li-Ling, WANG Ji-Hua. Conformational Change Characteristics in the Intrinsically Disordered FlgM Protein from a Hyperthermophile at Two Different Temperatures[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 384-392. doi: 10.3866/PKU.WHXB201412161 shu

Conformational Change Characteristics in the Intrinsically Disordered FlgM Protein from a Hyperthermophile at Two Different Temperatures

  • Received Date: 15 September 2014
    Available Online: 16 December 2014

    Fund Project: 国家自然科学基金(61271378, 31000324)资助项目 (61271378, 31000324)

  • The aim of this work was to compare the structural characteristics of the FlgM protein from the thermophile aquifex aeolicus at room temperature (293 K) and at the physiological temperature (358 K) using molecular dynamics simulations. Two independent long-time molecular dynamics simulations were performed using the GROMACS software package at 293 and 358 K, respectively. The OPLS-AA force field and the TIP3P water model were used. Each simulation was run for 1500 ns. We mainly analyzed the secondary structural characteristics, the overall conformation variation, the conformational characteristics of a semi-disordered region and the structured region of the FlgM protein at two different temperatures. The results indicate that the helix structure of the N terminal increased at room temperature. The FlgM protein had the following characteristics at the physiological temperature: the structure loosed, the helix structure reduced in size, the conformational stability weakened, the H1 helix spread, the conformational flexibility increased, and the degree of instability increased. In summary, the semi-disordered region (N terminal) formed a helical structure in the unbound state and its stability decreased with an increase in temperature. The FlgM protein adapts to temperature by increasing the degree of disorder, creating a more flexible structure by improving the binding rate.

  • 加载中
    1. [1]

      (1) Feller, G. J. Phys.: Condes. Matter 2010, 22 (32), 323101. doi: 10.1088/0953-8984/22/32/323101

    2. [2]

      (2) Ohnishi, K.; Kutsukake, K.; Suzuki, H.; Iino, T. Mol. Genet. Metab. 1990, 221 (2), 139.

    3. [3]

      (3) Gillen, K. L.; Hughes, K. T. J. Bacteriol. 1991, 173 (20), 6453.

    4. [4]

      (4) Ohnishi, K.; Kutsukake, K.; Suzuki, H.; Lino, T. Mol. Microbiol. 1992, 6 (21), 3149. doi: 10.1111/mmi.1992.6.issue-21

    5. [5]

      (5) Gillen, K. L.; Hughes, K. T. J. Bacteriol. 1993, 175 (21), 7006.

    6. [6]

      (6) Hughes, K. T.; Gillen, K. L.; Semon, M. J.; Karlinsey, J. E. Science 1993, 262 (5137), 1277. doi: 10.1126/science.8235660

    7. [7]

      (7) Kutsukake, K. Mol. Genet. Metab. 1994, 243 (6), 605.

    8. [8]

      (8) Wang, J. H.; Yang, Y. D.; Cao, Z. X.; Li, Z. X.; Zhao, H. L.; Zhou, Y. Q. Biophys. J. 2013, 105 (11), 1.

    9. [9]

      (9) Dunker, A. K.; Brown, C. J.; Lawson, J. D.; Iakoucheva, L. M.; Obradovic, Z. Biochemistry 2002, 41 (21), 6573. doi: 10.1021/bi012159+

    10. [10]

      (10) Zhang, T.; Faraggi, E.; Li, Z. X.; Zhou, Y. Q. Cell Biochem. Biophys. 2013, 76 (3), 1193.

    11. [11]

      (11) Huang, Y. Q.; Liu, Z. R. Acta Phys. -Chim. Sin. 2010, 26, 2061. [黄永棋, 刘志荣. 物理化学学报, 2010, 26, 2061.] doi: 10.3866/PKU.WHXB20100644

    12. [12]

      (12) Liu, Z. R.; Huang, Y. Q. Protein Sci. 2014, 23 (5), 539. doi: 10.1002/pro.2443

    13. [13]

      (13) Molloy, R. G.; Ma,W. K.; Allen, A. C.; Greenwood, K.; Bryan, L.; Sacora, R.;Williams, L.; Gage, M. J. Biochim. Biophys. Acta 2010, 1804 (7), 1457. doi: 10.1016/j.bbapap.2010.03.002

    14. [14]

      (14) Sorenson, M. K.; Ray, S. S.; Darst, S. A. Mol. Cell 2004, 14 (1), 127. doi: 10.1016/S1097-2765(04)00150-9

    15. [15]

      (15) Xu, Z. Y.; Zhao, L. L.; Cao, Z. X.;Wang, J. H. Acta Phys. -Chim. Sin. 2012, 28, 1665. [许朝莹, 赵立岭, 曹赞霞, 王吉华. 物理化学学报, 2012, 28, 1665.] doi: 10.3866/PKU.WHXB201204182

    16. [16]

      (16) Luo, F.; Gao, J.; Cheng, Y. H.; Cui,W.; Ji, M. J. Acta Phys. -Chim. Sin. 2012, 28, 2191. [罗芳, 高剑, 成元华, 崔巍, 计明娟. 物理化学学报, 2012, 28, 2191.] doi: 10.3866/PKU.WHXB201207063

    17. [17]

      (17) Dong, X. Y.; Du,W. J.; Liu, F. F. Acta Phys. -Chim. Sin. 2012, 28, 2735. [董晓燕, 都文婕, 刘夫锋. 物理化学学报, 2012, 28, 2735.] doi: 10.3866/PKU.WHXB201207162

    18. [18]

      (18) Cao, J.; Cao, Z. X.; Zhao, L. L.;Wang, J. H. Acta Phys. -Chim. Sin. 2012, 28, 479. [曹剑, 曹赞霞, 赵立岭, 王吉华. 物理化学学报, 2012, 28, 479.] doi: 10.3866/PKU.WHXB201111231

    19. [19]

      (19) Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. J. Comput. Chem. 2005, 26 (16), 1701.

    20. [20]

      (20) Jorgensen,W. L.; Tirado-Rives, J. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (19), 6665. doi: 10.1073/pnas.0408037102

    21. [21]

      (21) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869

    22. [22]

      (22) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577. doi: 10.1063/1.470117

    23. [23]

      (23) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98 (12), 10089. doi: 10.1063/1.464397

    24. [24]

      (24) Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126 (1), 014101. doi: 10.1063/1.2408420

    25. [25]

      (25) Berendsen, H. J.; Postma, J. P. M.; Van Gunsteren,W. F.; DiNola, A.; Haak, J. J. Chem. Phys. 1984, 81 (8), 3684. doi: 10.1063/1.448118

    26. [26]

      (26) Zhang, T.; Faraggi, E.; Xue, B.; Dunker, A. K.; Uversky, V. N.; Zhou, Y. Q. J. Biomol. Struct. Dyn. 2012, 29 (4), 799. doi: 10.1080/073911012010525022

    27. [27]

      (27) Faraggi, E.; Yang, Y. D.; Zhang, S. S.; Zhou, Y. Q. Structure 2009, 17 (11), 1515. doi: 10.1016/j.str.2009.09.006

    28. [28]

      (28) Faraggi, E.; Zhang, T.; Yang, Y. D.; Kurgan, L.; Zhou, Y. Q. J. Comput. Chem. 2012, 33 (3), 259. doi: 10.1002/jcc.v33.3

    29. [29]

      (29) Frishman, D.; Ar s, P. Proteins: Struct. Funct. Bioinf. 1995, 23 (4), 566.

    30. [30]

      (30) Heinig, M.; Frishman, D. Nucleic Acids Res. 2004, 32 (suppl 2), W500.

    31. [31]

      (31) Liu, F. F.; Ji, L.; Dong, X. Y.; Sun, Y. J. Phys. Chem. B 2009, 113 (32), 11320. doi: 10.1021/jp905580j

    32. [32]

      (32) Liu, F. F.; Dong, X. Y.; He, L. Z.; Middelberg, A. P. J.; Sun, Y. J. Phys. Chem. B 2001, 115 (41), 11879.

    33. [33]

      (33) Tegge, A. N.;Wang, Z.; Eickholt, J.; Cheng, J. L. Nucleic Acids Res. 2009, 37 (suppl 2),W515.


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(366)
  • Abstract views(492)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return