Citation: ZHANG Yu, WANG Hong-Ning, CHEN Ruo-Yu. In situ Synthesis of Cu-SSZ-13/Cordierite Monolithic Catalyst for the Selective Catalytic Reduction of NO with NH3[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 329-336. doi: 10.3866/PKU.WHXB201412082
-
SSZ-13 molecular sieves were synthesized in situ on the surface of a honeycomb-shaped cordierite support using a hydrothermal method, and the resulting material was characterized by X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The process for preparing SSZ-13/cordierite was optimized in detail. Furthermore, the ion exchange levels of the 50% Cu-SSZ-13/cordierite and Cu-SSZ-13 catalysts were tested in the ammonia-selective catalytic reduction (NH3-SCR) of NO both before and after the hydrothermal treatment process using a fixed-bed reactor. The results of these experiments showed that the Cu-SSZ-13/cordierite prepared in situ by hydrothermal synthesis had od catalytic activity, and gave an NO conversion of more than 80% at temperatures in the range of 200-500 ℃, with the highest NO conversion of 96.4%being reached at 300 ℃. After being aged hydrothermally at 850 ℃ for 12 h, the SCR activity of the Cu- SSZ-13 catalyst was significantly reduced, whereas that of Cu-SSZ-13/cordierite remained largely unchanged with an NO conversion of 91% at 300 ℃. Analysis of the catalysts framework both before and after the hydrothermal treatment by X-ray diffraction and solid state 27Al NMR revealed a significant reduction in the intensities of the X-ray diffraction and tetrahedral aluminumpeaks for Cu-SSZ-13, whereas those of the Cu-SSZ- 13/cordierite material remained unchanged. These results indicated that the Cu-SSZ-13/cordierite prepared by in situ hydrothermal synthesis was less prone to deactivation by hydrothermal aging.
-
-
[1]
(1) Farrauto, R. J.; Heck, R. M. Catal. Today 1999, 51, 351. doi: 10.1016/S0920-5861(99)00024-3
-
[2]
(2) Takaaki, K. Catal. Today 2004, 96, 171. doi: 10.1016/j.cattod.2004.06.119
-
[3]
(3) Iwamoto, M.; Hamada, H. Catal. Today 1991, 10, 57. doi: 10.1016/0920-5861(91)80074-J
-
[4]
(4) Long, R. Q.; Yang, R. T. J. Am. Chem. Soc. 1999, 121, 5595. doi: 10.1021/ja9842262
-
[5]
(5) Wang, T. J.; Baek, S.W.; Kwon, H. J.; Kim, Y. J.; Nam, I. S.; Cha, M. S.; Yeo, G. K. Ind. Eng. Chem. Res. 2011, 50, 2850. doi: 10.1021/ie101558d
-
[6]
(6) Kim, Y. J.; Kwon, H. J.; Heo, I.; Nam, I. S.; Cho, B. K.; Choung, J.W.; Cha, M. S.; Yeo, G. K. Appl. Catal. B 2012, 126, 9. doi: 10.1016/j.apcatb.2012.06.010
-
[7]
(7) Ma, L.; Chang, H.; Yang, S.; Chen, L.; Fu, L.; Li, J. Chem. Eng. J. 2012, 209, 652. doi: 10.1016/j.cej.2012.08.042
-
[8]
(8) Kwak, J. H.; Tonkyn, R. G.; Kim, D. H.; Szanyi, J.; Peden, C. H. F. J. Catal. 2010, 275, 187. doi: 10.1016/j.jcat.2010.07.031
-
[9]
(9) Fickel, D.W.; D′Addio, E.; Lauterbach, J. A.; Lobo, R. F. Appl. Catal. B 2011, 102, 441. doi: 10.1016/j.apcatb.2010.12.022
-
[10]
(10) Kwak, J. H.; Tran, D.; Burton, S. D.; Szanyi, J.; Lee, J. H.; Peden, C. H. F. J. Catal. 2012, 287, 203. doi: 10.1016/j.jcat.2011.12.025
-
[11]
(11) Chen, H. Y.; Sachtler,W. M. H. Catal. Today 1998, 42, 73. doi: 10.1016/S0920-5861(98)00078-9
-
[12]
(12) Chen, H. Y.; Sachtler,W. M. H. Catal. Lett. 1998, 50, 125. doi: 10.1023/A:1019079305250
-
[13]
(13) Gao, F.; Kwak, J. H.; Szanyi, J.; Peden, C. H. F. Top. Catal. 2013, 56, 1441. doi: 10.1007/s11244-013-0145-8
-
[14]
(14) Kwak, J. H.; Tran, D.; Szanyi, J.; Peden, C. H. F.; Lee, J. H. Catal. Lett. 2012, 142, 295. doi: 10.1007/s10562-012-0771-y
-
[15]
(15) Gao, F.;Walter, E. D.; Karp, E. M.; Luo, J. Y.; Tonkyn, R. G.; Kwak, J. H.; Szanyi, J.; Peden, C. H. F. J. Catal. 2013, 300, 20. doi: 10.1016/j.jcat.2012.12.020
-
[16]
(16) Schmieg, S. J.; Oh, S. H.; Kim, C. H.; Brown, D. B.; Lee, J. H.; Peden, C. H. F.; Kim, D. H. Catal. Today 2012, 184, 252. doi: 10.1016/j.cattod.2011.10.034
-
[17]
(17) Boorse, S.; Dettling, J. C. SCR on Low Thermal Mass Filter Substrates. US Patent 79 984 23 B2, 2011-08-16.
-
[18]
(18) Pantazis, C. C.; Trikalitis, P. N.; Pomonis, P. J. J. Phys. Chem. B 2005, 109, 12574. doi: 10.1021/jp0516689
-
[19]
(19) Lachman, I. M.; Patil, M. D. Method of Crystallizing a Zeolite on the Surface of a Monolithic Ceramic Substrate. US Patent 48 001 87, 1989-01-24.
-
[20]
(20) Wang, A. Q.; Liang, D. B.; Xu, C. H.; Sun, X. Y.; Guan,W.; Zhang, T. Chin. J. Catal. 2000, 21, 19. [王爱琴, 梁东白, 徐长海, 孙孝英, 关文, 张涛. 催化学报, 2000, 21, 19.]
-
[21]
(21) Wang, A. Q.; Liang, D. B.; Xu, C. H. Appl. Catal. B 2001, 32, 205. doi: 10.1016/S0926-3373(01)00138-2
-
[22]
(22) Wang, J. C.; Liu, Z. Q.; Feng, G.; Chang, L. P.; Bao,W. R. Fuel 2013, 109, 101. doi: 10.1016/j.fuel.2012.09.046
-
[23]
(23) Liu, Z. Q.; Tang, L.; Chang, L. P.;Wang, J. C.; Bao,W. R. Chin. J. Catal. 2011, 32, 546. [刘致强, 唐磊, 常丽萍, 王建成,鲍卫仁. 催化学报, 2011, 32, 546.] doi: 10.1016/S1872-2067(10)60205-7
-
[24]
(24) Li, L. D.; Chen, J. X.; Zhang, S. J.; Guan, N. J.;Wang, T. Y.; Liu, S. L. Catal. Today 2004, 90, 207. doi: 10.1016/j.cattod.2004.04.028
-
[25]
(25) Zones, S. I. Zeolite SSZ-13 and Its Method of Preparation. US Patent 4544538, 1985-10-01.
-
[26]
(26) Kwak, J. H.; Zhu, H.; Lee, J. H.; Peden, C. H. F.; Szanyi, J. Chem. Commun. 2012, 48, 4758. doi: 10.1039/c2cc31184d
-
[27]
(27) Kwak, J. H.; Lee, J. H.; Burton, S, D.; Lipton, A. S.; Peden, C. H. F.; Szanyi, J. Angew. Chem. 2013, 125, 10169. doi: 10.1002/ange.201303498
-
[28]
(28) Korhonen, S. T.; Fickel, D.W.; Lobo, R. F. Chem. Commun. 2011, 47, 800. doi: 10.1039/c0cc04218h
-
[29]
(29) Hao, T.;Wang, J.; Yu, T.;Wang, J. Q.; Shen, M. Q. Acta Phys. -Chim. Sin. 2014, 30, 1567. [郝腾, 王军, 于铁, 王建强, 沈美庆. 物理化学学报, 2014, 30, 1567.] doi: 10.3866/PKU.WHXB201405261
-
[30]
(30) Zhang, Q. L.; Xu, H. D.; Qiu, C. T.; Lin, T.; ng, M. C.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2012, 28, 1230. [张秋林, 徐海迪, 邱春天, 林涛, 龚茂初, 陈耀强. 物理化学学报, 2012, 28, 1230.] doi: 10.3866/PKU.WHXB201202232
-
[31]
(31) Li, L. D.; Chen, J. X.; Zhang, S. J.; Zhang, F. X.; Guan, N. J.; Wang, T. Y.; Liu, S. L. Environ. Sci. Technol. 2005, 39, 2841. doi: 10.1021/es049744t
-
[1]
-
-
[1]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[2]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[3]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[4]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[5]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[6]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[7]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[8]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[9]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[10]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[11]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[12]
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
-
[13]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[14]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[15]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[16]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[17]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[18]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[19]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[20]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[1]
Metrics
- PDF Downloads(490)
- Abstract views(520)
- HTML views(4)