Citation: ZHANG Yu, WANG Hong-Ning, CHEN Ruo-Yu. In situ Synthesis of Cu-SSZ-13/Cordierite Monolithic Catalyst for the Selective Catalytic Reduction of NO with NH3[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 329-336. doi: 10.3866/PKU.WHXB201412082 shu

In situ Synthesis of Cu-SSZ-13/Cordierite Monolithic Catalyst for the Selective Catalytic Reduction of NO with NH3

  • Received Date: 9 October 2014
    Available Online: 8 December 2014

    Fund Project: 国家自然科学基金(21101017)资助项目 (21101017)

  • SSZ-13 molecular sieves were synthesized in situ on the surface of a honeycomb-shaped cordierite support using a hydrothermal method, and the resulting material was characterized by X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The process for preparing SSZ-13/cordierite was optimized in detail. Furthermore, the ion exchange levels of the 50% Cu-SSZ-13/cordierite and Cu-SSZ-13 catalysts were tested in the ammonia-selective catalytic reduction (NH3-SCR) of NO both before and after the hydrothermal treatment process using a fixed-bed reactor. The results of these experiments showed that the Cu-SSZ-13/cordierite prepared in situ by hydrothermal synthesis had od catalytic activity, and gave an NO conversion of more than 80% at temperatures in the range of 200-500 ℃, with the highest NO conversion of 96.4%being reached at 300 ℃. After being aged hydrothermally at 850 ℃ for 12 h, the SCR activity of the Cu- SSZ-13 catalyst was significantly reduced, whereas that of Cu-SSZ-13/cordierite remained largely unchanged with an NO conversion of 91% at 300 ℃. Analysis of the catalysts framework both before and after the hydrothermal treatment by X-ray diffraction and solid state 27Al NMR revealed a significant reduction in the intensities of the X-ray diffraction and tetrahedral aluminumpeaks for Cu-SSZ-13, whereas those of the Cu-SSZ- 13/cordierite material remained unchanged. These results indicated that the Cu-SSZ-13/cordierite prepared by in situ hydrothermal synthesis was less prone to deactivation by hydrothermal aging.

  • 加载中
    1. [1]

      (1) Farrauto, R. J.; Heck, R. M. Catal. Today 1999, 51, 351. doi: 10.1016/S0920-5861(99)00024-3

    2. [2]

      (2) Takaaki, K. Catal. Today 2004, 96, 171. doi: 10.1016/j.cattod.2004.06.119

    3. [3]

      (3) Iwamoto, M.; Hamada, H. Catal. Today 1991, 10, 57. doi: 10.1016/0920-5861(91)80074-J

    4. [4]

      (4) Long, R. Q.; Yang, R. T. J. Am. Chem. Soc. 1999, 121, 5595. doi: 10.1021/ja9842262

    5. [5]

      (5) Wang, T. J.; Baek, S.W.; Kwon, H. J.; Kim, Y. J.; Nam, I. S.; Cha, M. S.; Yeo, G. K. Ind. Eng. Chem. Res. 2011, 50, 2850. doi: 10.1021/ie101558d

    6. [6]

      (6) Kim, Y. J.; Kwon, H. J.; Heo, I.; Nam, I. S.; Cho, B. K.; Choung, J.W.; Cha, M. S.; Yeo, G. K. Appl. Catal. B 2012, 126, 9. doi: 10.1016/j.apcatb.2012.06.010

    7. [7]

      (7) Ma, L.; Chang, H.; Yang, S.; Chen, L.; Fu, L.; Li, J. Chem. Eng. J. 2012, 209, 652. doi: 10.1016/j.cej.2012.08.042

    8. [8]

      (8) Kwak, J. H.; Tonkyn, R. G.; Kim, D. H.; Szanyi, J.; Peden, C. H. F. J. Catal. 2010, 275, 187. doi: 10.1016/j.jcat.2010.07.031

    9. [9]

      (9) Fickel, D.W.; D′Addio, E.; Lauterbach, J. A.; Lobo, R. F. Appl. Catal. B 2011, 102, 441. doi: 10.1016/j.apcatb.2010.12.022

    10. [10]

      (10) Kwak, J. H.; Tran, D.; Burton, S. D.; Szanyi, J.; Lee, J. H.; Peden, C. H. F. J. Catal. 2012, 287, 203. doi: 10.1016/j.jcat.2011.12.025

    11. [11]

      (11) Chen, H. Y.; Sachtler,W. M. H. Catal. Today 1998, 42, 73. doi: 10.1016/S0920-5861(98)00078-9

    12. [12]

      (12) Chen, H. Y.; Sachtler,W. M. H. Catal. Lett. 1998, 50, 125. doi: 10.1023/A:1019079305250

    13. [13]

      (13) Gao, F.; Kwak, J. H.; Szanyi, J.; Peden, C. H. F. Top. Catal. 2013, 56, 1441. doi: 10.1007/s11244-013-0145-8

    14. [14]

      (14) Kwak, J. H.; Tran, D.; Szanyi, J.; Peden, C. H. F.; Lee, J. H. Catal. Lett. 2012, 142, 295. doi: 10.1007/s10562-012-0771-y

    15. [15]

      (15) Gao, F.;Walter, E. D.; Karp, E. M.; Luo, J. Y.; Tonkyn, R. G.; Kwak, J. H.; Szanyi, J.; Peden, C. H. F. J. Catal. 2013, 300, 20. doi: 10.1016/j.jcat.2012.12.020

    16. [16]

      (16) Schmieg, S. J.; Oh, S. H.; Kim, C. H.; Brown, D. B.; Lee, J. H.; Peden, C. H. F.; Kim, D. H. Catal. Today 2012, 184, 252. doi: 10.1016/j.cattod.2011.10.034

    17. [17]

      (17) Boorse, S.; Dettling, J. C. SCR on Low Thermal Mass Filter Substrates. US Patent 79 984 23 B2, 2011-08-16.

    18. [18]

      (18) Pantazis, C. C.; Trikalitis, P. N.; Pomonis, P. J. J. Phys. Chem. B 2005, 109, 12574. doi: 10.1021/jp0516689

    19. [19]

      (19) Lachman, I. M.; Patil, M. D. Method of Crystallizing a Zeolite on the Surface of a Monolithic Ceramic Substrate. US Patent 48 001 87, 1989-01-24.

    20. [20]

      (20) Wang, A. Q.; Liang, D. B.; Xu, C. H.; Sun, X. Y.; Guan,W.; Zhang, T. Chin. J. Catal. 2000, 21, 19. [王爱琴, 梁东白, 徐长海, 孙孝英, 关文, 张涛. 催化学报, 2000, 21, 19.]

    21. [21]

      (21) Wang, A. Q.; Liang, D. B.; Xu, C. H. Appl. Catal. B 2001, 32, 205. doi: 10.1016/S0926-3373(01)00138-2

    22. [22]

      (22) Wang, J. C.; Liu, Z. Q.; Feng, G.; Chang, L. P.; Bao,W. R. Fuel 2013, 109, 101. doi: 10.1016/j.fuel.2012.09.046

    23. [23]

      (23) Liu, Z. Q.; Tang, L.; Chang, L. P.;Wang, J. C.; Bao,W. R. Chin. J. Catal. 2011, 32, 546. [刘致强, 唐磊, 常丽萍, 王建成,鲍卫仁. 催化学报, 2011, 32, 546.] doi: 10.1016/S1872-2067(10)60205-7

    24. [24]

      (24) Li, L. D.; Chen, J. X.; Zhang, S. J.; Guan, N. J.;Wang, T. Y.; Liu, S. L. Catal. Today 2004, 90, 207. doi: 10.1016/j.cattod.2004.04.028

    25. [25]

      (25) Zones, S. I. Zeolite SSZ-13 and Its Method of Preparation. US Patent 4544538, 1985-10-01.

    26. [26]

      (26) Kwak, J. H.; Zhu, H.; Lee, J. H.; Peden, C. H. F.; Szanyi, J. Chem. Commun. 2012, 48, 4758. doi: 10.1039/c2cc31184d

    27. [27]

      (27) Kwak, J. H.; Lee, J. H.; Burton, S, D.; Lipton, A. S.; Peden, C. H. F.; Szanyi, J. Angew. Chem. 2013, 125, 10169. doi: 10.1002/ange.201303498

    28. [28]

      (28) Korhonen, S. T.; Fickel, D.W.; Lobo, R. F. Chem. Commun. 2011, 47, 800. doi: 10.1039/c0cc04218h

    29. [29]

      (29) Hao, T.;Wang, J.; Yu, T.;Wang, J. Q.; Shen, M. Q. Acta Phys. -Chim. Sin. 2014, 30, 1567. [郝腾, 王军, 于铁, 王建强, 沈美庆. 物理化学学报, 2014, 30, 1567.] doi: 10.3866/PKU.WHXB201405261

    30. [30]

      (30) Zhang, Q. L.; Xu, H. D.; Qiu, C. T.; Lin, T.; ng, M. C.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2012, 28, 1230. [张秋林, 徐海迪, 邱春天, 林涛, 龚茂初, 陈耀强. 物理化学学报, 2012, 28, 1230.] doi: 10.3866/PKU.WHXB201202232

    31. [31]

      (31) Li, L. D.; Chen, J. X.; Zhang, S. J.; Zhang, F. X.; Guan, N. J.; Wang, T. Y.; Liu, S. L. Environ. Sci. Technol. 2005, 39, 2841. doi: 10.1021/es049744t


  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

Metrics
  • PDF Downloads(490)
  • Abstract views(520)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return