Citation: ZHANG Jie, ZHANG Jiang-Hao, ZHANG Chang-Bin, HE Hong. Complete Catalytic Oxidation of Ethanol over MnO2 with Different Crystal Phase Structures[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 353-359. doi: 10.3866/PKU.WHXB201412081
-
α-MnO2, β-MnO2, γ-MnO2, and δ-MnO2 catalysts were synthesized by hydrothermal methods, and their catalytic performances towards the oxidation of ethanol were evaluated in detail. The as-synthesized MnO2 catalysts were characterized by N2 adsorption- desorption measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (H2-TPR). The α-MnO2 catalyst showed the best activity of the catalysts tested for the combustion of ethanol and the trend in the activity of different MnO2 catalysts towards the oxidation of ethanol was of the order α-MnO2>δ-MnO2>γ-MnO2>β-MnO2. The effect of the crystal phase structure on the activity of the MnO2 catalysts was investigated. The XRD results showed that there were differences in the crystallinities of the α-, β-, γ-, δ-MnO2 catalysts, but these differences did not have a significant effect on their catalytic performances towards the oxidation of ethanol. The BET surface areas of the α-, β-, γ-, δ-MnO2 catalysts exhibited similar tendencies to their ethanol oxidation activities, although the results of standardization calculations showed that the surface area was not the main factor affecting their catalytical activities. The XPS results showed that the lattice oxygen concentration played an important role in defining the catalytic performance of the MnO2. The α-MnO2 catalyst showed the best reducibility of all of the MnO2 catalysts tested, as determined by H2-TPR. The excellent performance of α-MnO2 was attributed to its higher lattice oxygen concentration and reducibility, which were identified as the main factors affecting the activity of the MnO2 towards the complete oxidation of ethanol.
-
-
[1]
(1) Amann, M.; Lutz, M. J. Hazard. Mater. 2000, 78, 41. doi: 10.1016/S0304-3894(00)00216-8
-
[2]
(2) Grosjean, D.; Grosjean, E.; Gertler, A.W. Environ. Sci. Technol. 2001, 35, 45. doi: 10.1021/es001326a
-
[3]
(3) Jacobson, M. Z. Environ. Sci. Technol. 2007, 41, 4150. doi: 10.1021/es062085v
-
[4]
(4) Av uropoulos, G.; Oikonomopoulos, E.; Kanistras, D.; Ioannides, T. Appl. Catal. B: Environ. 2006, 65, 62. doi: 10.1016/j.apcatb.2005.12.016
-
[5]
(5) Cordi, E. M.; Falconer, J. L. J. Catal. 1996, 162, 104. doi: 10.1006/jcat.1996.0264
-
[6]
(6) Mitsui, T.; Tsutsui, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. B: Environ. 2008, 81, 56. doi: 10.1016/j.apcatb.2007.12.006
-
[7]
(7) Idriss, H.; Seebauer, E. G. J. Mol. Catal. A 2000, 152, 201. doi: 10.1016/S1381-1169(99)00297-6
-
[8]
(8) Li, H. J.; Tana; Zhang, X. J.; Huang, X. M.; ShenW. J. Catal. Commun. 2011, 12, 1361. doi: 10.1016/j.catcom.2011.05.016
-
[9]
(9) Ye, Q.; Gao, Q.; Zhang, X. R.; Xu, B. Q. Catal. Commun. 2006, 7, 589. doi: 10.1016/j.catcom.2006.01.023
-
[10]
(10) Wang, R. H.; Li, J. H. Environ. Sci. Technol. 2010, 44, 4282. doi: 10.1021/es100253c
-
[11]
(11) Zhao, P.;Wang, C. N.; He, F.; Liu, S. T. RSC Adv. 2014, 4, 45665. doi: 10.1039/C4RA07843H
-
[12]
(12) Liang, S. H.; Teng, F.; Yao,W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2008, 24, 205. [梁淑惠, 滕飞, 姚文清, 朱永法. 物理化学学报, 2008, 24, 205.] doi: 10.3866/PKU.WHXB20080205
-
[13]
(13) Li, J.W.; Zhao, P.; Liu, S. T. Appl. Catal. A: Gen. 2014, 482, 363. doi: 10.1016/j.apcata.2014.06.013
-
[14]
(14) Tang, X. F.; Li, Y. G.; Huang, X. M.; Xu, Y. D.; Zhu, H. Q.; Wang, J. G.; Shen,W. J. Appl. Catal. B: Environ. 2006, 62, 265. doi: 10.1016/j.apcatb.2005.08.004
-
[15]
(15) Morales, M. R.; Barbero, B. P.; Cadús, L. E. Appl. Catal. B: Environ. 2007, 74, 1. doi: 10.1016/j.apcatb.2007.01.008
-
[16]
(16) Njagi, E. C.; Chen, C. H.; Genuino, H.; Galindo, H.; Huang, H.; Suib, S. L. Appl Catal. B: Environ, 2010, 99, 103. doi: 10.1016/j.apcatb.2010.06.006
-
[17]
(17) Luo, J.; Zhang, Q. H.; Garcia-Martin z, J.; Suib, S. L. J. Am. Chem. Soc. 2008, 130, 3198. doi: 10.1021/ja077706e
-
[18]
(18) Ye, Q.; Zhao, J. S.; Huo, F. F.;Wang, D.; Cheng, S. Y.; Kang, T. F.; Dai, H. X. Microporous Mesoporous Mat. 2013, 172, 20. doi: 10.1016/j.micromeso.2013.01.007
-
[19]
(19) Wu, X. Q.; Zong, R. L.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2012, 28, 437. [吴小琴, 宗瑞隆, 朱永法. 物理化学学报, 2012, 28, 437.] doi: 10.3866/PKU.WHXB201112082
-
[20]
(20) Sui, N.; Duan, Y. Z.; Jiao, X. L.; Chen, D. R. J. Phys. Chem. C 2009, 113, 8560.
-
[21]
(21) Lin, J.; Cai, F.; Zhang, G. Y.; Yang, L. F.; Yang, J. Y.; Fang,W. P. Acta Phys. -Chim. Sin. 2013, 29, 597. [林健, 蔡钒,张国玉, 杨乐夫, 杨金玉, 方维平. 物理化学学报, 2013, 29, 597.] doi: 10.3866/PKU.WHXB201301041
-
[22]
(22) Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C 2008, 112, 5307. doi: 10.1021/jp0774995
-
[23]
(23) Xu, R.;Wang, X.;Wang, D. S.; Zhou, K. B.; Li, Y. D. J. Catal. 2006, 237, 426. doi: 10.1016/j.jcat.2005.10.026
-
[24]
(24) Dai, Y.; Li, J. H.; Peng, Y.; Tang, X. F. Acta Phys. -Chim. Sin. 2012, 28, 1771. [戴韵, 李俊华, 彭悦, 唐幸福. 物理化学学报, 2012, 28, 1771.] doi: 10.3866/PKU.WHXB201204175
-
[25]
(25) Li, J.W.; Song, C.; Liu, S. T. Acta Chim. Sin. 2012, 70, 2347. [李经纬, 宋灿, 刘善堂. 化学学报, 2012, 70, 2347.] doi: 10.6023/A12080562
-
[26]
(26) Bastos, S. S. T.; Órfão, J. J. M.; Freitas, M. M. A.; Pereira, M. F. R.; Figueiredo, J. L. Appl. Catal. B: Environ. 2009, 93, 30. doi: 10.1016/j.apcatb.2009.09.009
-
[27]
(27) Morales, M. R.; Barbero, B. P.; Cadús, L. E. Appl. Catal. B: Environ. 2006, 67, 229. doi: 10.1016/j.apcatb.2006.05.006
-
[28]
(28) Delimaris, D.; Ioannides, T. Appl. Catal. B: Environ. 2008, 84, 303. doi: 10.1016/j.apcatb.2008.04.006
-
[29]
(29) Fu, X. B.; Feng, J. Y.;Wang, H.; Ng, K. M. Catal. Commun. 2009, 10, 1844. doi: 10.1016/j.catcom.2009.06.013
-
[30]
(30) Hu, J.; Sun, K. Q.; He, D. P.; Xu, B. Q. Chin. J. Catal. 2007, 28, 1025. [胡敬, 孙科强, 何代平, 徐柏庆. 催化学报, 2007, 28, 1025.] doi: 10.1016/S1872-2067(08)60001-7
-
[31]
(31) Ye, Q.; Huo, F. F.; Yan, L. N.;Wang, J.; Cheng, S. Y.; Kang, T.F. Acta Phys. -Chim. Sin. 2011, 27, 2872. [叶青, 霍飞飞, 闫立娜, 王娟, 程水源, 康天放. 物理化学学报, 2011, 27, 2872.] doi: 10.3866/PKU.WHXB20112872
-
[32]
(32) Dai, Y.;Wang, X. Y.; Li, D.; Dai, Q. G. J. Hazard. Mater. 2011, 188, 132. doi: 10.1016/j.jhazmat.2011.01.084
-
[33]
(33) Liu, J.; Makwana, V.; Cai, J.; Suib, S. L.; Aindow, M. J. Phys. Chem. B 2003, 107, 9185. doi: 10.1021/jp0300593
-
[1]
-
-
[1]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[2]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[3]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[4]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[5]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[6]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[7]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[8]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[9]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[10]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[11]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[12]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[13]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[14]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[15]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[16]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[17]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[18]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[19]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[20]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[1]
Metrics
- PDF Downloads(428)
- Abstract views(728)
- HTML views(47)