Citation: ZHANG Jie, ZHANG Jiang-Hao, ZHANG Chang-Bin, HE Hong. Complete Catalytic Oxidation of Ethanol over MnO2 with Different Crystal Phase Structures[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 353-359. doi: 10.3866/PKU.WHXB201412081 shu

Complete Catalytic Oxidation of Ethanol over MnO2 with Different Crystal Phase Structures

  • Received Date: 3 November 2014
    Available Online: 8 December 2014

    Fund Project: 国家自然科学基金(21422706) (21422706)国家高技术研究发展计划项目(863) (2012AA062702)资助 (863) (2012AA062702)

  • α-MnO2, β-MnO2, γ-MnO2, and δ-MnO2 catalysts were synthesized by hydrothermal methods, and their catalytic performances towards the oxidation of ethanol were evaluated in detail. The as-synthesized MnO2 catalysts were characterized by N2 adsorption- desorption measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (H2-TPR). The α-MnO2 catalyst showed the best activity of the catalysts tested for the combustion of ethanol and the trend in the activity of different MnO2 catalysts towards the oxidation of ethanol was of the order α-MnO2>δ-MnO2>γ-MnO2>β-MnO2. The effect of the crystal phase structure on the activity of the MnO2 catalysts was investigated. The XRD results showed that there were differences in the crystallinities of the α-, β-, γ-, δ-MnO2 catalysts, but these differences did not have a significant effect on their catalytic performances towards the oxidation of ethanol. The BET surface areas of the α-, β-, γ-, δ-MnO2 catalysts exhibited similar tendencies to their ethanol oxidation activities, although the results of standardization calculations showed that the surface area was not the main factor affecting their catalytical activities. The XPS results showed that the lattice oxygen concentration played an important role in defining the catalytic performance of the MnO2. The α-MnO2 catalyst showed the best reducibility of all of the MnO2 catalysts tested, as determined by H2-TPR. The excellent performance of α-MnO2 was attributed to its higher lattice oxygen concentration and reducibility, which were identified as the main factors affecting the activity of the MnO2 towards the complete oxidation of ethanol.

  • 加载中
    1. [1]

      (1) Amann, M.; Lutz, M. J. Hazard. Mater. 2000, 78, 41. doi: 10.1016/S0304-3894(00)00216-8

    2. [2]

      (2) Grosjean, D.; Grosjean, E.; Gertler, A.W. Environ. Sci. Technol. 2001, 35, 45. doi: 10.1021/es001326a

    3. [3]

      (3) Jacobson, M. Z. Environ. Sci. Technol. 2007, 41, 4150. doi: 10.1021/es062085v

    4. [4]

      (4) Av uropoulos, G.; Oikonomopoulos, E.; Kanistras, D.; Ioannides, T. Appl. Catal. B: Environ. 2006, 65, 62. doi: 10.1016/j.apcatb.2005.12.016

    5. [5]

      (5) Cordi, E. M.; Falconer, J. L. J. Catal. 1996, 162, 104. doi: 10.1006/jcat.1996.0264

    6. [6]

      (6) Mitsui, T.; Tsutsui, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. B: Environ. 2008, 81, 56. doi: 10.1016/j.apcatb.2007.12.006

    7. [7]

      (7) Idriss, H.; Seebauer, E. G. J. Mol. Catal. A 2000, 152, 201. doi: 10.1016/S1381-1169(99)00297-6

    8. [8]

      (8) Li, H. J.; Tana; Zhang, X. J.; Huang, X. M.; ShenW. J. Catal. Commun. 2011, 12, 1361. doi: 10.1016/j.catcom.2011.05.016

    9. [9]

      (9) Ye, Q.; Gao, Q.; Zhang, X. R.; Xu, B. Q. Catal. Commun. 2006, 7, 589. doi: 10.1016/j.catcom.2006.01.023

    10. [10]

      (10) Wang, R. H.; Li, J. H. Environ. Sci. Technol. 2010, 44, 4282. doi: 10.1021/es100253c

    11. [11]

      (11) Zhao, P.;Wang, C. N.; He, F.; Liu, S. T. RSC Adv. 2014, 4, 45665. doi: 10.1039/C4RA07843H

    12. [12]

      (12) Liang, S. H.; Teng, F.; Yao,W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2008, 24, 205. [梁淑惠, 滕飞, 姚文清, 朱永法. 物理化学学报, 2008, 24, 205.] doi: 10.3866/PKU.WHXB20080205

    13. [13]

      (13) Li, J.W.; Zhao, P.; Liu, S. T. Appl. Catal. A: Gen. 2014, 482, 363. doi: 10.1016/j.apcata.2014.06.013

    14. [14]

      (14) Tang, X. F.; Li, Y. G.; Huang, X. M.; Xu, Y. D.; Zhu, H. Q.; Wang, J. G.; Shen,W. J. Appl. Catal. B: Environ. 2006, 62, 265. doi: 10.1016/j.apcatb.2005.08.004

    15. [15]

      (15) Morales, M. R.; Barbero, B. P.; Cadús, L. E. Appl. Catal. B: Environ. 2007, 74, 1. doi: 10.1016/j.apcatb.2007.01.008

    16. [16]

      (16) Njagi, E. C.; Chen, C. H.; Genuino, H.; Galindo, H.; Huang, H.; Suib, S. L. Appl Catal. B: Environ, 2010, 99, 103. doi: 10.1016/j.apcatb.2010.06.006

    17. [17]

      (17) Luo, J.; Zhang, Q. H.; Garcia-Martin z, J.; Suib, S. L. J. Am. Chem. Soc. 2008, 130, 3198. doi: 10.1021/ja077706e

    18. [18]

      (18) Ye, Q.; Zhao, J. S.; Huo, F. F.;Wang, D.; Cheng, S. Y.; Kang, T. F.; Dai, H. X. Microporous Mesoporous Mat. 2013, 172, 20. doi: 10.1016/j.micromeso.2013.01.007

    19. [19]

      (19) Wu, X. Q.; Zong, R. L.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2012, 28, 437. [吴小琴, 宗瑞隆, 朱永法. 物理化学学报, 2012, 28, 437.] doi: 10.3866/PKU.WHXB201112082

    20. [20]

      (20) Sui, N.; Duan, Y. Z.; Jiao, X. L.; Chen, D. R. J. Phys. Chem. C 2009, 113, 8560.

    21. [21]

      (21) Lin, J.; Cai, F.; Zhang, G. Y.; Yang, L. F.; Yang, J. Y.; Fang,W. P. Acta Phys. -Chim. Sin. 2013, 29, 597. [林健, 蔡钒,张国玉, 杨乐夫, 杨金玉, 方维平. 物理化学学报, 2013, 29, 597.] doi: 10.3866/PKU.WHXB201301041

    22. [22]

      (22) Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C 2008, 112, 5307. doi: 10.1021/jp0774995

    23. [23]

      (23) Xu, R.;Wang, X.;Wang, D. S.; Zhou, K. B.; Li, Y. D. J. Catal. 2006, 237, 426. doi: 10.1016/j.jcat.2005.10.026

    24. [24]

      (24) Dai, Y.; Li, J. H.; Peng, Y.; Tang, X. F. Acta Phys. -Chim. Sin. 2012, 28, 1771. [戴韵, 李俊华, 彭悦, 唐幸福. 物理化学学报, 2012, 28, 1771.] doi: 10.3866/PKU.WHXB201204175

    25. [25]

      (25) Li, J.W.; Song, C.; Liu, S. T. Acta Chim. Sin. 2012, 70, 2347. [李经纬, 宋灿, 刘善堂. 化学学报, 2012, 70, 2347.] doi: 10.6023/A12080562

    26. [26]

      (26) Bastos, S. S. T.; Órfão, J. J. M.; Freitas, M. M. A.; Pereira, M. F. R.; Figueiredo, J. L. Appl. Catal. B: Environ. 2009, 93, 30. doi: 10.1016/j.apcatb.2009.09.009

    27. [27]

      (27) Morales, M. R.; Barbero, B. P.; Cadús, L. E. Appl. Catal. B: Environ. 2006, 67, 229. doi: 10.1016/j.apcatb.2006.05.006

    28. [28]

      (28) Delimaris, D.; Ioannides, T. Appl. Catal. B: Environ. 2008, 84, 303. doi: 10.1016/j.apcatb.2008.04.006

    29. [29]

      (29) Fu, X. B.; Feng, J. Y.;Wang, H.; Ng, K. M. Catal. Commun. 2009, 10, 1844. doi: 10.1016/j.catcom.2009.06.013

    30. [30]

      (30) Hu, J.; Sun, K. Q.; He, D. P.; Xu, B. Q. Chin. J. Catal. 2007, 28, 1025. [胡敬, 孙科强, 何代平, 徐柏庆. 催化学报, 2007, 28, 1025.] doi: 10.1016/S1872-2067(08)60001-7

    31. [31]

      (31) Ye, Q.; Huo, F. F.; Yan, L. N.;Wang, J.; Cheng, S. Y.; Kang, T.F. Acta Phys. -Chim. Sin. 2011, 27, 2872. [叶青, 霍飞飞, 闫立娜, 王娟, 程水源, 康天放. 物理化学学报, 2011, 27, 2872.] doi: 10.3866/PKU.WHXB20112872

    32. [32]

      (32) Dai, Y.;Wang, X. Y.; Li, D.; Dai, Q. G. J. Hazard. Mater. 2011, 188, 132. doi: 10.1016/j.jhazmat.2011.01.084

    33. [33]

      (33) Liu, J.; Makwana, V.; Cai, J.; Suib, S. L.; Aindow, M. J. Phys. Chem. B 2003, 107, 9185. doi: 10.1021/jp0300593


  • 加载中
    1. [1]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    2. [2]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    3. [3]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    4. [4]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    5. [5]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    6. [6]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    7. [7]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    12. [12]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    13. [13]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    14. [14]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    17. [17]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    18. [18]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    19. [19]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

Metrics
  • PDF Downloads(428)
  • Abstract views(926)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return