Citation: CHEN Hong, WANG Shi-Xian, ZHAO Wan-Long, ZHANG Neng-Neng, ZHENG Ying-Ping, SUN Yue-Ming. Preparation of Pt/TiO2 Nanofibers and Their Electrocatalytic Activity towards Methanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 302-308. doi: 10.3866/PKU.WHXB201412031
-
A Pt/TiO2 nanofiber catalyst has been prepared through the combination of an electrospinning technique with a reductive impregnation method. The compositions, morphologies and structures of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). The results showed that the crystal phase of the TiO2 nanofibers was composed of anatase and rutile TiO2. Pt nanoparticles were found to be uniformly distributed on the surface of the TiO2 nanofibers with an average size of 4.0 nm. The mass fraction of Pt in the Pt/TiO2 nanofiber catalyst was about 20%. The electrocatalytic activities of the samples towards the oxidation of methanol were measured by cyclic voltammetry and chronoamperometry using a three-electrode system in an acidic solution. Compared with Pt/P25 and commercial Pt/C catalysts containing the same quality percentage of Pt nanoparticles, the Pt/TiO2 nanofiber catalyst exhibited higher catalytic activity towards the oxidation of methanol and better stability.
-
Keywords:
-
Electrospinning
, - TiO2 nanofiber,
- Pt nanoparticle,
- Methanol,
- Catalytic oxidation
-
-
-
[1]
(1) Wang, L.; Ma, J. H. Acta Phys. -Chim. Sin. 2014, 30 (7), 1267. [王丽, 马俊红. 物理化学学报, 2014, 30 (7), 1267.] doi: 10.3866/PKU.WHXB201405052
-
[2]
(2) Seiler, T.; Savinova, E. R.; Friedrich, K. A.; Stimming, U. Electrochimica Acta 2004, 49 (22), 3927.
-
[3]
(3) Léger, J. M.; Rousseau, S.; Coutanceau, C.; Hahn, F.; Lamy, C. Electrochimica Acta 2005, 50 (25), 5118.
-
[4]
(4) Ávila-García, I.; Ramírez, C.; Hallen López, J. M.; Arce Estrada E. M. J. Alloy. Compd. 2010, 495, 462. doi: 10.1016/j.jallcom.2009.10.210
-
[5]
(5) Selvaraj, V.; Alagar, M. Electrochem. Commun. 2007, 9 (5), 1145. doi: 10.1016/j.elecom.2007.01.011
-
[6]
(6) jkovi?, S. L. J. Electroanal. Chem. 2004, 573 (2), 271. doi: 10.1016/j.jelechem.2004.07.013
-
[7]
(7) Zhou, X.W.; Gan, Y. L.; Du, J. J.; Tian, D. N.; Zhang, R. H.; Yang, C. Y.; Dai, Z. X. J. Power Sources 2013, 232, 310. doi: 10.1016/j.jpowsour.2013.01.062
-
[8]
(8) Wang, C.; Markovic, N. M.; Stamenkovic, V. R. ACS Catal. 2012, 2, 891. doi: 10.1021/cs3000792
-
[9]
(9) Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Chem. Soc. Rev. 2010, 39, 2184. doi: 10.1039/b912552c
-
[10]
(10) Zhou, X.W.; Gan, Y. L.; Sun, S. G. Acta Phys. -Chim. Sin. 2012, 28 (9), 2071. [周新文, 甘亚利, 孙世刚. 物理化学学报, 2012, 28 (9), 2071.] doi: 10.3866/PKU.WHXB201205031
-
[11]
(11) Ghosh, C. R.; Santanu, P. Chem. Rev. 2012, 112, 2373. doi: 10.1021/cr100449n
-
[12]
(12) Liu, B.; Liao, S.; Liang, Z. Prog. Chem. 2011, 23, 852.
-
[13]
(13) Lai, X.; Halperta, J. E.;Wang, D. Energy Environ. Sci. 2012, 5, 5604. doi: 10.1039/c1ee02426d
-
[14]
(14) Menzel, N.; Ortel, E.; Kraehnert, R.; Strasser, P. ChemPhysChem 2012, 13, 1385. doi: 10.1002/cphc.v13.6
-
[15]
(15) McCurry, D. A.; Kamundi, M.; Fayette, M.;Wafula, F.; Dimitrov, N. ACS Appl. Mater. Interfaces 2011, 3, 4459. doi: 10.1021/am2011433
-
[16]
(16) Ataee-Esfahani, H.; Nemoto, Y.;Wang, L.; Yamauchi, Y. Chem. Commun. 2011, 47 (13), 3885.
-
[17]
(17) Deng, Y. J.; Tian, N.; Zhou, Z. Y.; Huang, R.; Liu, Z. L.; Xiao, J.; Sun, S. G.; Chem. Sci. 2012, 3, 1157. doi: 10.1039/c2sc00723a
-
[18]
(18) Liu, H. X.; Tian, N.; Brandon, M. P.; Zhou, Z. Y.; Lin, J. L.; Hardacre, C.; Lin,W. F.; Sun, S. G. ACS Catal. 2012, 2, 708. doi: 10.1021/cs200686a
-
[19]
(19) Tian, N.; Zhou, Z. Y.; Yu, N. F.; Sun, S. G. J. Am. Chem. Soc. 2010, 132, 7580. doi: 10.1021/ja102177r
-
[20]
(20) Luo, B. M.; Yan, X. B.; Xu, S.; Xue, Q. J. Electrochimica Acta 2012, 59, 429.
-
[21]
(21) Park, K.W.; Seol, K. S. Electrochem. Commun. 2007, 9 (9), 2256. doi: 10.1016/j.elecom.2007.06.027
-
[22]
(22) Lou, X.W.; Deng, D.; Lee, J. Y.; Archer, L. A. J. Mater. Chem. 2008, 20 (20), 6562. doi: 10.1021/cm801607e
-
[23]
(23) Pang, H. L; Zhang, X. H.; Zhong, X. X.; Liu, B.;Wei, X. G.; Kuang, Y. F.; Chen, J. H. J. Colloid Interface Sci. 2008, 319 (1), 193. doi: 10.1016/j.jcis.2007.10.046
-
[24]
(24) Jayaraman, S.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E.W. J. Phys. Chem. B 2005, 109 (48), 22958. doi: 10.1021/jp053053h
-
[25]
(25) Cui, Z.; Feng, L.; Liu, C.; Xing,W. J. Power Sources 2011, 196 (5), 2621. doi: 10.1016/j.jpowsour.2010.08.118
-
[26]
(26) Campos, C. L.; Roldán, C.; Aponte, M.; Ishikawa, Y.; Cabrera, C. R. J. Electroanal. Chem. 2005, 581 (2), 206. doi: 10.1016/j.jelechem.2005.04.002
-
[27]
(27) Gu, D. M.; Chu, Y. Y.;Wang, Z. B.; Jiang, Z. Z.; Yin, G. P.; Liu, Y. Appl. Catal. B 2011, 102 (1), 9.
-
[28]
(28) Neto, A. O.; Farias, L. A.; Dias, R. R.; Brandalise, M.; Linardi, M.; Spinacé, E. V. Electrochem. Commun. 2008, 10 (9), 1315. doi: 10.1016/j.elecom.2008.06.023
-
[29]
(29) Yoo, S. J.; Jeon, T. Y.; Lee, K. S.; Park, K.W.; Sung, Y. E. Chem. Commun. 2010, 46 (5), 794. doi: 10.1039/b916335b
-
[30]
(30) Murdoch, M.;Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. Nature Chem. 2011, 3 (6), 489.
-
[31]
(31) Chen, M. S.; odman, D.W. Science 2004, 306 (5694), 252. doi: 10.1126/science.1102420
-
[32]
(32) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107 (7), 2891. doi: 10.1021/cr0500535
-
[33]
(33) Ma, C. A.; Yu, B.; Shi, M. Q.; Lang, X. L. Electrochemistry 2011, 17 (2), 149. [马淳安, 俞彬, 施梅勤, 郎小玲. 电化学, 2011, 17 (2), 149.]
-
[34]
(34) Abida, B.; Chirchi, L.; Baranton, S.; Napporn, T.W.; Kochkar, H.; Léger, J. M.; Ghorbe, A. Appl. Catal. B 2011, 106 (3), 609.
-
[35]
(35) Zhou, Y.; Chu, Y. Q.; Liu,W. M.; Ma, C. A. Acta Phys. -Chim. Sin. 2013, 29 (2), 287. [周阳, 褚有群, 刘委明, 马淳安.物理化学学报, 2013, 29 (2), 287.] doi: 10.3866/PKU.WHXB201211261
-
[36]
(36) Porter, J. F.; Li, Y. G.; Chan, C. K. J. Mater. Sci. 1999, 34 (7), 1523. doi: 10.1023/A:1004560129347
-
[37]
(37) Liu, X.; Chen, J.; Liu, G.; Zhang, L.; Zhang, H.; Yi, B. J. Power Sources 2010, 195 (13), 4098. doi: 10.1016/j.jpowsour.2010.01.077
-
[38]
(38) Lin, M. C. Study on the Performance of Anode Catalyst of Direct Methanol Fuel Cell. Ph. D. Dissertation, Shanghai Jiao Tong University, Shanghai, 2008. [林茂财. 直接甲醇燃料电池阳极催化剂的性能研究[D]. 上海: 上海交通大学, 2008.]
-
[39]
(39) Xing, L.; Jia, J.;Wang, Y.; Zhang, B.; Dong, S. J. Int. J. Hydrog. Energy 2010, 35 (22), 12169. doi: 10.1016/j.ijhydene.2010.07.162
-
[40]
(40) Hoster, H.; Iwasita, T.; Baumgärtner. H.; Vielstich,W. Phys. Chem. Chem. Phys. 2001, 3 (3), 337. doi: 10.1039/b004895j
-
[41]
(41) Jiang, J.; Kucernak, A. J. Electroanal. Chem. 2003, 543 (2), 187. doi: 10.1016/S0022-0728(03)00046-9
-
[42]
(42) Fan, Y.; Yang, Z.; Huang, P.; Zhang, X.; Liu, Y. M. Electrochimica Acta 2013, 105, 157. doi: 10.1016/j.electacta.2013.04.158
-
[1]
-
-
[1]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[2]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[3]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[4]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[5]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[6]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[7]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[8]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[9]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[10]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[11]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[12]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[13]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[14]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[15]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[16]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[17]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[18]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[19]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[20]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[1]
Metrics
- PDF Downloads(449)
- Abstract views(516)
- HTML views(11)