Citation: XU Hong, TONG Min-Man, WU Dong, XIAO Gang, YANG Qing-Yuan, LIU Da-Huan, ZHONG Chong-Li. Computational Study of Metal-Organic Frameworks for Removing H2S from Natural Gas[J]. Acta Physico-Chimica Sinica, 2015, 31(1): 41-50. doi: 10.3866/PKU.WHXB201411132
金属-有机骨架材料用于去除天然气中H2S的计算研究
众所周知, 天然气作为一种利用效率高的清洁能源, 其需求量正与日俱增. 但天然气中包含的H2S等有害气体会危害人类健康、腐蚀设备、污染生态环境等. 为解决这一问题, 寻找良好的H2S吸附剂, 本文采用巨正则系综蒙特卡罗(GCMC)模拟方法, 针对天然气中H2S/CH4混合气分离, 对33种具有代表性的稳定金属-有机骨架(MOF)材料进行H2S选择性和工作容量(变压吸附(PSA)及真空变压吸附(VSA)过程)的筛选. 结果表明,ZIF-80, Zn2-bpydtc, CAU-1-(OH)2, CH3O-MOFa最适用于本体系VSA过程的气体分离; 而后两者最适用于PSA过程的气体分离.通过分析高选择性和高工作容量材料的结构特征, 发现改性官能基团以及小孔作用的出现是影响选择性的关键因素, 其中―Cl、―OH、―OCH3基团对H2S气体的吸附作用力最强. 具有高的工作容量材料的特点是选择性高, 对气体吸附作用力大, 吸附位置多. 基于筛选出的高选择性、高工作容量的稳定MOF材料总结出的强化H2S选择性及工作容量的一般性规律, 为MOF材料应用于天然气脱硫提供了理论基础.
English
Computational Study of Metal-Organic Frameworks for Removing H2S from Natural Gas
Natural gas is a highly efficient energy source subject to growing demand. Natural gas contains H2S, which can harmhuman health and cause equipment corrosion and environmental pollution. Effective H2S adsorbents are necessary to overcome these problems. Grand canonical Monte Carlo (GCMS) simulations were performed to study the selectivity and working capacity (pressure swing adsorption (PSA) and vacuumpressure swing adsorption (VSA) processes) of H2S in 33 kinds of stable metal-organic frameworks (MOFs), with the aim of separating H2S from H2S/CH4 gas mixture. ZIF-80, Zn2-bpydtc, CAU-1-(OH)2, and CH3O-MOFa were suitable materials for the VSAprocess. CAU-1-(OH)2 and CH3O-MOFa were suitable for the PSA process. The structures of materials exhibiting high selectivity and working capacity suggested that appropriate functionality and small pore sizes were important for high selectivity. MOFs with ―Cl, ―OH, and ―OCH3 functionality exhibited the strongest adsorption. Materials exhibiting high selectivity, strong interaction with H2S, and large numbers of adsorption sites may have high working capacities. High selectivity and high working capacity stable MOFs were screened and analyzed, to enhance the selectivity and working capacity toward H2S. This provides a theoretical basis for separating H2S fromnatural gas using MOFs.
-
Key words:
-
Hydrogen sulfide
- / Metal-organic framework
- / Natural gas
- / Screen
- / Separation
-
-
[1]
(1) Shahbaz, M.; Lean, H. H.; Farooq, A. Renew. Sust. Energ. Rev. 2013, 18, 87. doi: 10.1016/j.rser.2012.09.029
(1) Shahbaz, M.; Lean, H. H.; Farooq, A. Renew. Sust. Energ. Rev. 2013, 18, 87. doi: 10.1016/j.rser.2012.09.029
-
[2]
(2) Tagliabue, M.; Farrusseng, D.; Valencia, S.; Aguado, S.; Ravon, U.; Rizzo, C.; Corma, A.; Mirodatos, C. Chem. Eng. J. 2009, 155, 553. doi: 10.1016/j.cej.2009.09.010(2) Tagliabue, M.; Farrusseng, D.; Valencia, S.; Aguado, S.; Ravon, U.; Rizzo, C.; Corma, A.; Mirodatos, C. Chem. Eng. J. 2009, 155, 553. doi: 10.1016/j.cej.2009.09.010
-
[3]
(3) Vaesen, S.; Guillerm, V.; Yang, Q. Y.; Wiersum, A. D.; Marszalek, B.; Gil, B.; Vimont, A.; Daturi, T.; Llewellyn, P. L.; Serre, C.; Maurin, G.; Weireld, G. D. Chem. Commun. 2013, 49, 10082. doi: 10.1039/c3cc45828h(3) Vaesen, S.; Guillerm, V.; Yang, Q. Y.; Wiersum, A. D.; Marszalek, B.; Gil, B.; Vimont, A.; Daturi, T.; Llewellyn, P. L.; Serre, C.; Maurin, G.; Weireld, G. D. Chem. Commun. 2013, 49, 10082. doi: 10.1039/c3cc45828h
-
[4]
(4) Belmabkhout, Y.; Heymans, N.; Weireld, G. D.; Sayari, A. Energy & Fuels 2011, 25, 1310. doi: 10.1021/ef1015704(4) Belmabkhout, Y.; Heymans, N.; Weireld, G. D.; Sayari, A. Energy & Fuels 2011, 25, 1310. doi: 10.1021/ef1015704
-
[5]
(5) Guidotti, T. L. Occupational Medicine-Oxford 1996, 46, 367. doi: 10.1093/occmed/46.5.367(5) Guidotti, T. L. Occupational Medicine-Oxford 1996, 46, 367. doi: 10.1093/occmed/46.5.367
-
[6]
(6) Cosoli, P.; Ferrone, M.; Pricl, S.; Fermeglia, M. Chem. Eng. J. 2008, 145, 86. doi: 10.1016/j.cej.2008.07.034(6) Cosoli, P.; Ferrone, M.; Pricl, S.; Fermeglia, M. Chem. Eng. J. 2008, 145, 86. doi: 10.1016/j.cej.2008.07.034
-
[7]
(7) Bhide, B. D.; Voskericyan, A.; Stern, S. A. J. Membr. Sci. 1998, 140, 27. doi: 10.1016/S0376-7388(97)00257-3(7) Bhide, B. D.; Voskericyan, A.; Stern, S. A. J. Membr. Sci. 1998, 140, 27. doi: 10.1016/S0376-7388(97)00257-3
-
[8]
(8) Yang, Q. Y.; Vaesen, S.; Ra n, F.; Wiersum, A. D.; Wu, D.; La , A.; Devic, T.; Martineau, C.; Taulelle, F.; Llewellyn, P. L.; Jobic, H.; Zhong, C. L.; Serre, C.; Weireld, G. D.; Maurin, G. Angew. Chem. 2013, 125, 10506. doi: 10.1002/ange.201302682(8) Yang, Q. Y.; Vaesen, S.; Ra n, F.; Wiersum, A. D.; Wu, D.; La , A.; Devic, T.; Martineau, C.; Taulelle, F.; Llewellyn, P. L.; Jobic, H.; Zhong, C. L.; Serre, C.; Weireld, G. D.; Maurin, G. Angew. Chem. 2013, 125, 10506. doi: 10.1002/ange.201302682
-
[9]
(9) An, X. H.; Liu, D. H.; Zhong, C. L. Acta Phys. -Chim. Sin. 2011, 27, 553. [安晓辉, 刘大欢,仲崇立. 物理化学学报, 2011, 27, 553.] doi: 10.3866/PKU.WHXB20110319(9) An, X. H.; Liu, D. H.; Zhong, C. L. Acta Phys. -Chim. Sin. 2011, 27, 553. [安晓辉, 刘大欢,仲崇立. 物理化学学报, 2011, 27, 553.] doi: 10.3866/PKU.WHXB20110319
-
[10]
(10) Mu, W.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L. Acta Phys. -Chim. Sin. 2010, 26, 1657. [穆韡,刘大欢, 阳庆元,仲崇立. 物理化学学报, 2010, 26, 1657.] doi: 10.3866/PKU.WHXB20100616(10) Mu, W.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L. Acta Phys. -Chim. Sin. 2010, 26, 1657. [穆韡,刘大欢, 阳庆元,仲崇立. 物理化学学报, 2010, 26, 1657.] doi: 10.3866/PKU.WHXB20100616
-
[11]
(11) Zhong, C. L.; Liu, D. H.; Yang, Q. Y. The Structure-Activity Relationship and Design of Metal-Organic Frameworks; Science Press: Beijing, 2013; pp 1-3. [仲崇立,刘大欢, 阳庆元. 金属-有机骨架材料的构效关系及设计. 北京: 科学出版社, 2013: 1-3.](11) Zhong, C. L.; Liu, D. H.; Yang, Q. Y. The Structure-Activity Relationship and Design of Metal-Organic Frameworks; Science Press: Beijing, 2013; pp 1-3. [仲崇立,刘大欢, 阳庆元. 金属-有机骨架材料的构效关系及设计. 北京: 科学出版社, 2013: 1-3.]
-
[12]
(12) Lu, Z.; Xing, H.; Sun, R.; Bai, J.; Zheng, B.; Li, Y. Cryst. Growth Des. 2012, 12, 1081. doi: 10.1021/cg201594p(12) Lu, Z.; Xing, H.; Sun, R.; Bai, J.; Zheng, B.; Li, Y. Cryst. Growth Des. 2012, 12, 1081. doi: 10.1021/cg201594p
-
[13]
(13) Zhai, F.; Zheng, Q.; Chen, Z. CrystEngComm 2013, 15, 2040. doi: 10.1039/c2ce26701b(13) Zhai, F.; Zheng, Q.; Chen, Z. CrystEngComm 2013, 15, 2040. doi: 10.1039/c2ce26701b
-
[14]
(14) Yang, J.; Grzech, A.; Mulder, F. M.; Dingemans, T. J. Chem. Commun. 2011, 47, 5244. doi: 10.1039/c1cc11054c(14) Yang, J.; Grzech, A.; Mulder, F. M.; Dingemans, T. J. Chem. Commun. 2011, 47, 5244. doi: 10.1039/c1cc11054c
-
[15]
(15) Schaate, A.; Roy, P.; dt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chem. Eur. J. 2011, 17, 6643. doi: 10.1002/chem.v17.24(15) Schaate, A.; Roy, P.; dt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chem. Eur. J. 2011, 17, 6643. doi: 10.1002/chem.v17.24
-
[16]
(16) Ma, Q. T.; Xiao, Y. L.; Tong, M. M.; Li, Z. J.; Yang, Q. Y.; Liu, D. H.; Zhong, C. L. Scientia Sinica Chimica 2014, 44 (6), 812. [麻沁甜,肖远龙, 童敏曼,李正杰, 阳庆元, 刘大欢,仲崇立. 中国科学:化学, 2014, 44 (6), 812.](16) Ma, Q. T.; Xiao, Y. L.; Tong, M. M.; Li, Z. J.; Yang, Q. Y.; Liu, D. H.; Zhong, C. L. Scientia Sinica Chimica 2014, 44 (6), 812. [麻沁甜,肖远龙, 童敏曼,李正杰, 阳庆元, 刘大欢,仲崇立. 中国科学:化学, 2014, 44 (6), 812.]
-
[17]
(17) Maghsoudi, H.; Soltanieh, M.; Bozorgzadeh, H.; Mohamadalizadeh, A. Adsorption 2013, 19, 1045. doi: 10.1007/s10450-013-9528-1(17) Maghsoudi, H.; Soltanieh, M.; Bozorgzadeh, H.; Mohamadalizadeh, A. Adsorption 2013, 19, 1045. doi: 10.1007/s10450-013-9528-1
-
[18]
(18) Hamon, L.; Frère, M.; Weireld, G. Adsorption 2008, 14, 493. doi: 10.1007/s10450-008-9113-1(18) Hamon, L.; Frère, M.; Weireld, G. Adsorption 2008, 14, 493. doi: 10.1007/s10450-008-9113-1
-
[19]
(19) Accelrys, Materials studio, Version 3.0; Accelrys Software Inc: San Die , 2003.(19) Accelrys, Materials studio, Version 3.0; Accelrys Software Inc: San Die , 2003.
-
[20]
(20) Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186. doi: 10.1073/pnas.0602439103(20) Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186. doi: 10.1073/pnas.0602439103
-
[21]
(21) Shi, Q.; Chen, Z. F.; Song, Z. W.; Li, J. P.; Dong, J. X. Angew. Chem. 2011, 123, 698. doi: 10.1002/ange.v123.3(21) Shi, Q.; Chen, Z. F.; Song, Z. W.; Li, J. P.; Dong, J. X. Angew. Chem. 2011, 123, 698. doi: 10.1002/ange.v123.3
-
[22]
(22) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Science 2008, 319, 939.(22) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Science 2008, 319, 939.
-
[23]
(23) Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 3875. doi: 10.1021/ja809459e(23) Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 3875. doi: 10.1021/ja809459e
-
[24]
(24) Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. J. Am. Chem. Soc. 2008, 130, 12626. doi: 10.1021/ja805222x(24) Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. J. Am. Chem. Soc. 2008, 130, 12626. doi: 10.1021/ja805222x
-
[25]
(25) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850. doi: 10.1021/ja8057953(25) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850. doi: 10.1021/ja8057953
-
[26]
(26) Huang, Y.; Qin, W.; Li, Z.; Li, Y. Dalton Trans. 2012, 41, 9283. doi: 10.1039/c2dt30950e(26) Huang, Y.; Qin, W.; Li, Z.; Li, Y. Dalton Trans. 2012, 41, 9283. doi: 10.1039/c2dt30950e
-
[27]
(27) Jasuja, H.; Walton, K. S. J. Phys. Chem. C 2013, 117, 7062. doi: 10.1021/jp311857e(27) Jasuja, H.; Walton, K. S. J. Phys. Chem. C 2013, 117, 7062. doi: 10.1021/jp311857e
-
[28]
(28) Yang, Q. Y.; Wiersum, A. D.; Llewellyn, P. L.; Guillerm, V; Serre, C.; Maurin, G. Chem. Commun. 2011, 47, 9603. doi: 10.1039/c1cc13543k(28) Yang, Q. Y.; Wiersum, A. D.; Llewellyn, P. L.; Guillerm, V; Serre, C.; Maurin, G. Chem. Commun. 2011, 47, 9603. doi: 10.1039/c1cc13543k
-
[29]
(29) Barthelet, K.; Marrot, J.; Riou, D.; Ferey, G. Angew. Chem. 2002, 114, 291.(29) Barthelet, K.; Marrot, J.; Riou, D.; Ferey, G. Angew. Chem. 2002, 114, 291.
-
[30]
(30) Yang, Q. Y.; Vaesen, S.; Vishnuvarthan, M.; Ra n, F.; Serre, C.; Vimont, A.; Daturi, M.; De Weireld, G.; Maurin, G. J. Mater. Chem. 2012, 22, 10210. doi: 10.1039/c2jm15609a(30) Yang, Q. Y.; Vaesen, S.; Vishnuvarthan, M.; Ra n, F.; Serre, C.; Vimont, A.; Daturi, M.; De Weireld, G.; Maurin, G. J. Mater. Chem. 2012, 22, 10210. doi: 10.1039/c2jm15609a
-
[31]
(31) Volkringer, C.; Loiseau, T.; Haouas, M.; Taulelle, F.; Popov, D.; Burghammer, M.; Riekel, C.; Zlotea, C.; Cuevas, F.; Latroche, M.; Phanon, D.; Knofelv, C.; Llewellyn, P. L.; Férey, G. Chem. Mater. 2009, 21, 5783. doi: 10.1021/cm9023106(31) Volkringer, C.; Loiseau, T.; Haouas, M.; Taulelle, F.; Popov, D.; Burghammer, M.; Riekel, C.; Zlotea, C.; Cuevas, F.; Latroche, M.; Phanon, D.; Knofelv, C.; Llewellyn, P. L.; Férey, G. Chem. Mater. 2009, 21, 5783. doi: 10.1021/cm9023106
-
[32]
(32) Guillerm, V.; Ra n, F.; Dan-Hardi, M.; Devic, T.; Vishnuvarthan, M.; Campo, B.; Vimont, A.; Clet, G.; Yang, Q.; Maurin, G.; érey, G.; Vittadini, A.; Gross, S.; Serre, C. Angew. Chem. Int. Edit. 2012, 51, 9267. doi: 10.1002/anie.201204806(32) Guillerm, V.; Ra n, F.; Dan-Hardi, M.; Devic, T.; Vishnuvarthan, M.; Campo, B.; Vimont, A.; Clet, G.; Yang, Q.; Maurin, G.; érey, G.; Vittadini, A.; Gross, S.; Serre, C. Angew. Chem. Int. Edit. 2012, 51, 9267. doi: 10.1002/anie.201204806
-
[33]
(33) Comotti, A.; Bracco, S.; Sozzani, P.; Horike, S.; Matsuda, R.; Chen, J.; Takata, M.; Kubota, Y.; Kitagawa, S. J. Am. Chem. Soc. 2008, 130, 13664. doi: 10.1021/ja802589u(33) Comotti, A.; Bracco, S.; Sozzani, P.; Horike, S.; Matsuda, R.; Chen, J.; Takata, M.; Kubota, Y.; Kitagawa, S. J. Am. Chem. Soc. 2008, 130, 13664. doi: 10.1021/ja802589u
-
[34]
(34) Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, G. R.; Rosseinsky, M. G. Angew. Chem. 2012, 124, 7558. doi: 10.1002/ange.v124.30(34) Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, G. R.; Rosseinsky, M. G. Angew. Chem. 2012, 124, 7558. doi: 10.1002/ange.v124.30
-
[35]
(35) Reinsch, H.; van der Veen, M. A.; Gil, B.; Marszalek, B.; Verbiest, T.; de Vos, D.; Stock, N. Chem. Mater. 2013, 25, 17. doi: 10.1021/cm3025445(35) Reinsch, H.; van der Veen, M. A.; Gil, B.; Marszalek, B.; Verbiest, T.; de Vos, D.; Stock, N. Chem. Mater. 2013, 25, 17. doi: 10.1021/cm3025445
-
[36]
(36) Ahnfeldt, T.; Guillou N.; Gunzelmann D.; Margiolaki, I.; Loiseau, T.; Ferey, G.; Senker, J.; Stock, N. Angew. Chem. 2009, 121, 5265. doi: 10.1002/ange.v121:28(36) Ahnfeldt, T.; Guillou N.; Gunzelmann D.; Margiolaki, I.; Loiseau, T.; Ferey, G.; Senker, J.; Stock, N. Angew. Chem. 2009, 121, 5265. doi: 10.1002/ange.v121:28
-
[37]
(37) Wißmann, G.; Schaate, A.; Lilienthal, S.; Bremer, I.; Schneider, A. M.; Behrens, P. Microporous Mesoporous Mat. 2012, 152, 64. doi: 10.1016/j.micromeso.2011.12.010(37) Wißmann, G.; Schaate, A.; Lilienthal, S.; Bremer, I.; Schneider, A. M.; Behrens, P. Microporous Mesoporous Mat. 2012, 152, 64. doi: 10.1016/j.micromeso.2011.12.010
-
[38]
(38) Morris, W.; Volosskiy, B.; Demir, S.; Gándara, F.; McGrier, P. L.; Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M. Inorg. Chem. 2012, 51, 6443.(38) Morris, W.; Volosskiy, B.; Demir, S.; Gándara, F.; McGrier, P. L.; Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M. Inorg. Chem. 2012, 51, 6443.
-
[39]
(39) Biswal, B. P.; Panda, T.; Banerjee, R. Chem. Commun. 2012, 11868.(39) Biswal, B. P.; Panda, T.; Banerjee, R. Chem. Commun. 2012, 11868.
-
[40]
(40) Yang, S.; Sun, J.; Ramirez-Cuesta, A. J.; Callear, S. K.; David, W. I. F.; Anderson, D. P.; Newby, R.; Blake, A. J.; Parker, J. E.; Tang, C. C.; Schröder, M. Nat. Chem. 2012, 4, 887. doi: 10.1038/nchem.1457(40) Yang, S.; Sun, J.; Ramirez-Cuesta, A. J.; Callear, S. K.; David, W. I. F.; Anderson, D. P.; Newby, R.; Blake, A. J.; Parker, J. E.; Tang, C. C.; Schröder, M. Nat. Chem. 2012, 4, 887. doi: 10.1038/nchem.1457
-
[41]
(41) Weston, M. H.; Delaquil, A. A.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Cryst. Growth Des. 2013, 13, 2938. doi: 10.1021/cg400342m(41) Weston, M. H.; Delaquil, A. A.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Cryst. Growth Des. 2013, 13, 2938. doi: 10.1021/cg400342m
-
[42]
(42) Lin, X.; Blake, A. J.; Wilson, C.; Sun, X. Z.; Champness, N. R.; George, M. W.; Hubberstey, P.; Mokaya, R.; Schröder, M. J. Am. Chem. Soc. 2006, 128, 10745. doi: 10.1021/ja060946u(42) Lin, X.; Blake, A. J.; Wilson, C.; Sun, X. Z.; Champness, N. R.; George, M. W.; Hubberstey, P.; Mokaya, R.; Schröder, M. J. Am. Chem. Soc. 2006, 128, 10745. doi: 10.1021/ja060946u
-
[43]
(43) Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Adv. Mater. 2011, 23, 249. doi: 10.1002/adma.201002854(43) Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Adv. Mater. 2011, 23, 249. doi: 10.1002/adma.201002854
-
[44]
(44) Krishna, R.; van Baten, J. M. Phys. Chem. Chem. Phys. 2011, 13, 10593. doi: 10.1039/c1cp20282k(44) Krishna, R.; van Baten, J. M. Phys. Chem. Chem. Phys. 2011, 13, 10593. doi: 10.1039/c1cp20282k
-
[45]
(45) Li, J.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H.; Balbuena, P. B.; Zhou, H. Coord. Chem. Rev. 2011, 255, 1791. doi: 10.1016/j.ccr.2011.02.012(45) Li, J.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H.; Balbuena, P. B.; Zhou, H. Coord. Chem. Rev. 2011, 255, 1791. doi: 10.1016/j.ccr.2011.02.012
-
[46]
(46) Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nature Chemistry 2011, 4, 83.(46) Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nature Chemistry 2011, 4, 83.
-
[47]
(47) Yang, Q. Y.; Liu, D. H.; Zhong, C. L.; Li, J. R. Chem. Rev. 2013, 113, 8261.(47) Yang, Q. Y.; Liu, D. H.; Zhong, C. L.; Li, J. R. Chem. Rev. 2013, 113, 8261.
-
[48]
(48) Keskin, S. J. Phys. Chem. C 2011, 115, 800. doi: 10.1021/jp109743e(48) Keskin, S. J. Phys. Chem. C 2011, 115, 800. doi: 10.1021/jp109743e
-
[49]
(49) Krishna, R.; van Baten, J. M. Langmuir 2010, 26, 10854. doi: 10.1021/la100737c(49) Krishna, R.; van Baten, J. M. Langmuir 2010, 26, 10854. doi: 10.1021/la100737c
-
[50]
(50) Lin, L.; Berger, A. H.; Martin, R. L.; Kim, J.; Swisher, J. A.; Jariwala, K.; Rycroft, C. H.; Bhown, A. S.; Deem, M. W.; Haranczyk, M.; Smit, B. Nature Materials 2012, 11, 633. doi: 10.1038/nmat3336(50) Lin, L.; Berger, A. H.; Martin, R. L.; Kim, J.; Swisher, J. A.; Jariwala, K.; Rycroft, C. H.; Bhown, A. S.; Deem, M. W.; Haranczyk, M.; Smit, B. Nature Materials 2012, 11, 633. doi: 10.1038/nmat3336
-
[51]
(51) Xu, Q.; Zhong, C. L. J. Phys. Chem. C 2010, 114, 5035.(51) Xu, Q.; Zhong, C. L. J. Phys. Chem. C 2010, 114, 5035.
-
[52]
(52) Zheng, C. C.; Zhong, C. J. Phys. Chem. C 2010, 114, 9945. doi: 10.1021/jp102409a(52) Zheng, C. C.; Zhong, C. J. Phys. Chem. C 2010, 114, 9945. doi: 10.1021/jp102409a
-
[53]
(53) Xiao, Y. L.; Yang, Q. Y.; Liu, D. H.; Zhong, C. L. CrystEngComm 2013, 15, 9588. doi: 10.1039/c3ce41081a(53) Xiao, Y. L.; Yang, Q. Y.; Liu, D. H.; Zhong, C. L. CrystEngComm 2013, 15, 9588. doi: 10.1039/c3ce41081a
-
[54]
(54) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision D.01; Gaussian Inc.: Wallingford, CT, 2004.(54) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision D.01; Gaussian Inc.: Wallingford, CT, 2004.
-
[55]
(55) Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569. doi: 10.1021/jp972543+(55) Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569. doi: 10.1021/jp972543+
-
[56]
(56) Kamath, G.; Lubna, N.; Potoff, J. J. J. Phys. Chem. 2005, 123, 124505. doi: 10.1063/1.2049278(56) Kamath, G.; Lubna, N.; Potoff, J. J. J. Phys. Chem. 2005, 123, 124505. doi: 10.1063/1.2049278
-
[57]
(57) Mayo, S. L.; Olafson, B. D.; ddard, W. A., II, J. Phys. Chem. 1990, 94, 8897. doi: 10.1021/j100389a010(57) Mayo, S. L.; Olafson, B. D.; ddard, W. A., II, J. Phys. Chem. 1990, 94, 8897. doi: 10.1021/j100389a010
-
[58]
(58) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; ddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024. doi: 10.1021/ja00051a040(58) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; ddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024. doi: 10.1021/ja00051a040
-
[59]
(59) Babarao, R.; Dai, S.; Jiang, D. J. Phys. Chem. C 2011, 115, 8126.(59) Babarao, R.; Dai, S.; Jiang, D. J. Phys. Chem. C 2011, 115, 8126.
-
[60]
(60) Krishna, R.; van Baten, J. M. Langmuir 2010, 26, 2975. doi: 10.1021/la9041875(60) Krishna, R.; van Baten, J. M. Langmuir 2010, 26, 2975. doi: 10.1021/la9041875
-
[61]
(61) Hamon, L.; Serre, C.; Devic, T.; Loiseau, T.; Millange, F.; Férey, G.; Weireld, G. D. J. Am. Chem. Soc. 2009, 131, 8775. doi: 10.1021/ja901587t(61) Hamon, L.; Serre, C.; Devic, T.; Loiseau, T.; Millange, F.; Férey, G.; Weireld, G. D. J. Am. Chem. Soc. 2009, 131, 8775. doi: 10.1021/ja901587t
-
[62]
(62) Meng, Z. S.; Lu, R. F.; Rao, D. W.; Kan, E. J.; Xiao, C. Y.; Deng, K. M. Int. J. Hydrog. Energy 2013, 38, 9811. doi: 10.1016/j.ijhydene.2013.05.140(62) Meng, Z. S.; Lu, R. F.; Rao, D. W.; Kan, E. J.; Xiao, C. Y.; Deng, K. M. Int. J. Hydrog. Energy 2013, 38, 9811. doi: 10.1016/j.ijhydene.2013.05.140
-
[63]
(63) Nilton, R., Jr.; Herve, J.; Aziz, G.; Fabrice, S.; Guillaume, M.; Sandrine, B.; Philip, L. L.; Thomas, D.; Christian, S.; Gerard, F. Angew. Chem. Int. Edit. 2008, 47, 6611 doi: 10.1002/anie.v47:35(63) Nilton, R., Jr.; Herve, J.; Aziz, G.; Fabrice, S.; Guillaume, M.; Sandrine, B.; Philip, L. L.; Thomas, D.; Christian, S.; Gerard, F. Angew. Chem. Int. Edit. 2008, 47, 6611 doi: 10.1002/anie.v47:35
-
[64]
(64) Zhang, W. J.; Huang, H. L.; Zhong, C. L.; Liu, D. H. Phys. Chem. Chem. Phys. 2012, 14, 2317. doi: 10.1039/c2cp23839j(64) Zhang, W. J.; Huang, H. L.; Zhong, C. L.; Liu, D. H. Phys. Chem. Chem. Phys. 2012, 14, 2317. doi: 10.1039/c2cp23839j
-
[65]
(65) Wang, S. Y.; Yang, Q. Y.; Zhong, C. L. Sep. Purif. Technol. 2008, 60, 30. doi: 10.1016/j.seppur.2007.07.050(65) Wang, S. Y.; Yang, Q. Y.; Zhong, C. L. Sep. Purif. Technol. 2008, 60, 30. doi: 10.1016/j.seppur.2007.07.050
-
[66]
(66) Wu, D.; Wang, C. C. AIChE 2011, 58, 2078.
(66) Wu, D.; Wang, C. C. AIChE 2011, 58, 2078.
-
[1]
计量
- PDF下载量: 478
- 文章访问数: 1624
- HTML全文浏览量: 194