Citation: HU Yu-Qiang, ZHU Ning, HAN Li-Min. Channel of Electronic Interactions in Diferrocenyl Pyrrole Derivatives[J]. Acta Physico-Chimica Sinica, ;2015, 31(2): 227-236. doi: 10.3866/PKU.WHXB201411061 shu

Channel of Electronic Interactions in Diferrocenyl Pyrrole Derivatives

  • Received Date: 5 August 2014
    Available Online: 6 November 2014

    Fund Project: 内蒙古自治区自然科学基金(2012ZD01) (2012ZD01) 内蒙古工业大学自然科学基金(X201207) (X201207)内蒙古自治区研究生科研创新基金(B20131012802)资助项目 (B20131012802)

  • 2,5-Diferrocenyl-1-(3-trifluorom-ethylphenyl)-pyrrole (1), 2,5-diferrocenyl-1-(4-fluorophenyl)-pyrrole (2), 2,5-diferrocenyl-1-phenyl pyrrole (3), 2,5-diferro-cenyl-1-(4-ethylphenyl)-pyrrole (4), and 2,5-diferrocenyl- 1-(4-ethoxyphenyl)-pyrrole (5) were prepared by the one-pot cycloaddition reaction of ferrocenyl alkyne. The 2,5-diferrocenyl-1-phenyl-1-pyrrole derivatives were characterized by elemental analysis, Fourier-transform infrared (FTIR) spectroscopy, mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy. The influence of substituents at the phenyl moiety on the electronic interaction was studied using cyclic voltammetry (CV) and density functional theory (DFT) calculations. A linear relationship was observed between the first oxidation potential (Ea1), oxidation potential difference (ΔE) with Hammett constant (Hammett σ) of the substituent, pyrrole 1H NMR chemical shift (δ), and pyrrole N natural bond orbital (NBO) charge. A high N charge density weakened the electronic interaction, and vice versa. Electron transfer between the two ferrocenyl units of these diferrocenyl pyrrole derivatives was influenced by the N charge density.

  • 加载中
    1. [1]

      (1) Dunitz, J. D.; Orgel, L. E.; Rich, A. Acta Cryst. 1956, 9, 373. doi: 10.1107/S0365110X56001091

    2. [2]

      (2) Seiler, P.; Dunitz, J. D. Acta Cryst. 1979, B35, 1068.

    3. [3]

      (3) Stephen, B.; Dermot, O. H. Chem. Rev. 1997, 97, 637. doi: 10.1021/cr960083v

    4. [4]

      (4) Gilbert, M. B.; Thomas, J. M.; Cowan, D. O.; Vanda, C. L.; Kaufman, F.; Roling, P. V.; Rausch, M. D. Inorg. Chem. 1975, 14, 506. doi: 10.1021/ic50145a011

    5. [5]

      (5) Pfaff, U.; Hildebrandt, A.; Schaarschmidt, D.; Ruffer, T.; Low, P. J.; Lang, H. Organometallics 2013, 32, 6106. doi: 10.1021/om4007533

    6. [6]

      (6) Dammer, S. J.; Solntsev, P. V.; Sabin, J. R.; Nemykin, V. N. Inorg. Chem. 2013, 52, 9496. doi: 10.1021/ic401163y

    7. [7]

      (7) Wang, J.; Feng, L. M.; Ma, F. J.; Lin, F.; Xie, L. L.; Yuan, Y. F. Chin. J. Org. Chem. 2012, 32, 1479. [王静, 冯丽敏, 马飞娟, 林芬, 谢莉莉, 袁耀锋. 有机化学学报, 2012, 32, 1479.] doi: 10.6023/cjoc1112291

    8. [8]

      (8) Klimova, E. I.; Garcia, M. M.; Alamo, M. F.; Churakov, A. V.; Maya, S. C.; Beletskaya, I. P. Polyhedron 2014, 68, 272. doi: 10.1016/j.poly.2013.11.003

    9. [9]

      (9) Morrison, J.W. H.; Krogsrud, S.; Hendrickson, D. N. Inorg. Chem. 1973, 12, 1998. doi: 10.1021/ic50127a009

    10. [10]

      (10) Richardson, D. E.; Taube, H. Coord. Chem. Rev. 1984, 60, 107. doi: 10.1016/0010-8545(84)85063-8

    11. [11]

      (11) Astruc, D. Accounts Chem. Res. 1997, 30, 383. doi: 10.1021/ar970007u

    12. [12]

      (12) Cowan, D. O.; Park, J.; Pittman, C. U.; Sasaki, Y.; Mukherjee, T. K.; Diamond, N. A. J. Am. Chem. Soc. 1972, 94, 5110. doi: 10.1021/ja00769a069

    13. [13]

      (13) Yamamoto, T.; Seki, K.; Yamamoto, A.; Motoyama, I.; Sano, H. Inorg. Chim. Acta 1983, 73, 75. doi: 10.1016/S0020-1693(00)90829-6

    14. [14]

      (14) Dong, T. Y.; Ke, T. J.; Peng, S. M.; Yeh, S. K. Inorg. Chem. 1989, 28, 2103. doi: 10.1021/ic00310a018

    15. [15]

      (15) Ribou, A. C.; Launay, J. P.; Sachtleben, M. L.; Li, H.; Spangler, C.W. Inorg. Chem. 1996, 35, 3735. doi: 10.1021/ic951376u

    16. [16]

      (16) Aguado, J. E.; Crespo, O.; Gimeno, M. C.; Jones, P. G.; Laguna, A.; Nieto, Y. Eur. J. Inorg. Chem. 2008, 3031.

    17. [17]

      (17) Caru , O.; Santis, G. D.; Fabbrizzi, L.; Licchelli, M.; Monichino, A.; Pallavicini, P. Inorg. Chem. 1992, 31, 765. doi: 10.1021/ic00031a014

    18. [18]

      (18) Hollandsworth, C. B.; Hollis, J.W. G.; Slebodnick, C.; Deck, P. A. Organometallics 1999, 18, 3610. doi: 10.1021/om990321n

    19. [19]

      (19) Camire, N.;Westerhoff, U. T. M.; Geiger,W. E. J. Organomet. Chem. 2001, 637, 823.

    20. [20]

      (20) Tahara, K.; Akita, T.; Katao, S.; Kikuchi, J. I. Dalton Trans. 2014, 43, 1368. doi: 10.1039/c3dt52503a

    21. [21]

      (21) Bruna, S.; Perles, J.; Nieto, D.; Ana, M.; Vadillo, G.; Cuadrado, I. J. Organomet. Chem. 2014, 751, 769. doi: 10.1016/j.jorganchem.2013.07.052

    22. [22]

      (22) Alvarez, J.; Kaifer, A. E. Organometallics 1999, 18, 5733. doi: 10.1021/om990678r

    23. [23]

      (23) Qin, S. N.; Hu, J. R.; Chen, Z. L.; Liang, F. P. J. Coord. Chem. 2011, 64, 3718. doi: 10.1080/00958972.2011.630072

    24. [24]

      (24) Javed, F.; Altaf, A. A.; Badshah, A.; Tahir, M. N.; Siddiq, M.; Rehman, Z. U.; Shah, A.; Ullah, S.; Lal, B. J. Coord. Chem. 2012, 65, 969. doi: 10.1080/00958972.2012.664769

    25. [25]

      (25) Liu, Z. S.; Zhu, N.; Han, L. M.; Xie, R. J.; Hong, H. L.; Suo, Q. L. J. Coord. Chem. 2012, 65, 2804. doi: 10.1080/00958972.2012.704024

    26. [26]

      (26) Han, L. M.; Hu, Y. Q.; Suo, Q. L.; Luo, M. H.;Weng, L. H. J. Coord. Chem. 2010, 63, 600. doi: 10.1080/00958970903582688

    27. [27]

      (27) Xie, R. J.; Han, L. M.; Gao, Y. Y.; Zhu, N.; Hong, H. L.; Suo, Q. L. J. Coord. Chem. 2012, 65, 4086. doi: 10.1080/00958972.2012.732696

    28. [28]

      (28) Xie, R. J.; Han, L. M.; Suo, Q. L.; Hong, H. L.; Luo, M. H. J. Coord. Chem. 2010, 63, 1700. doi: 10.1080/00958972.2010.487102

    29. [29]

      (29) Xie, R. J.; Han, L. M.; Zhu, N.; Hong, H. L.; Suo, Q. L. J. Coord. Chem. 2011, 64, 3180. doi: 10.1080/00958972.2011.616198

    30. [30]

      (30) Xie, R. J.; Han, L. M.; Zhu, N.; Hong, H. L.; Suo, Q. L.; Fu, P. Polyhedron 2012, 38, 7.

    31. [31]

      (31) Hu, Y. Q.; Han, L. M.; Zhu, N.; Hong, H. L.; Xie, R. J. J. Coord. Chem. 2013, 66, 3481. doi: 10.1080/00958972.2013.841902

    32. [32]

      (32) Wang,Y. Q.; Han, L. M.; Suo, Q. L.; Zhu, N.; Hao, J. M.; Xie, R. J. Polyhedron 2013, 54, 221. doi: 10.1016/j.poly.2013.02.043

    33. [33]

      (33) Tarraga, A.; Molina, P.; Curiel, D.; Velasco, M. D. Tetrahedron Letters 2002, 43, 8453. doi: 10.1016/S0040-4039(02)02097-X

    34. [34]

      (34) Hildebrandt, A.; Schaarschmidt, D.; As, L. V.; Swarts, J. C.; Lang, H. Inorg. Chim. Acta 2011, 374, 112. doi: 10.1016/j.ica.2011.02.058

    35. [35]

      (35) Hildebrandt, A.; Lang, H. Dalton Trans. 2011, 40, 11831. doi: 10.1039/c1dt10997a

    36. [36]

      (36) Hildebrandt, A.; Schaarschmidt, D.; Lang, H. Organometallics 2011, 30, 556. doi: 10.1021/om100914m

    37. [37]

      (37) Hansch, C.; Leo, A.; Taft, R.W. Chem. Rev. 199l, 97, 165.

    38. [38]

      (38) Nemukhina, A. V.;Weinhold, F. J. Chem. Phys. 1993, 98, 1329. doi: 10.1063/1.464299

    39. [39]

      (39) Badenhoopa, J. K.;Weinhold, F. J. Chem. Phys. 1997, 107, 5406. doi: 10.1063/1.474248

    40. [40]

      (40) Carpenter, J. E.;Weinhold, F. J. Chem. Phys. 1988, 92, 4306. doi: 10.1021/j100326a013

    41. [41]

      (41) Zimmerman, H. E.;Weinhold, F. J. Org. Chem. 2013, 78, 1844. doi: 10.1021/jo301620k

    42. [42]

      (42) Drake, S. R.; Khattar, R. Organomet. Synth. 1988, 4, 234.

    43. [43]

      (43) Han, L. M.; Zhang, L. F.; Zhang, G. B.; Yin, Z. G. Chin. J. Inorg. Chem. 2008, 24, 1807. [韩利民, 张利峰, 张广斌, 尹志国. 无机化学学报, 2008, 24, 1807.]

    44. [44]

      (44) Sorensen, A. R.; Overgaard, L.; Johannsen, I. Synthetic Metals. 1993, 55, 1626. doi: 10.1016/0379-6779(93)90296-9

    45. [45]

      (45) Imler, G. H.; Lu, Z.; Kistler, K. A.; Carroll, P. J.;Wayland, B. B.; Zdilla, M. J. Inorg. Chem. 2012, 51, 10122. doi: 10.1021/ic300435t

    46. [46]

      (46) Feng, X.; Tong, B.; Shen, J. B.; Shi, J. B.; Han, T. Y.; Chen, L.; Zhi, J. G.; Lu, P.; Ma, Y. G.; Dong, Y. P. J. Phys. Chem. B 2010, 114, 16731. doi: 10.1021/jp108254g

    47. [47]

      (47) Zheng, Q.W.; Hua, R. M. Tetrahedron Letters 2010, 51, 4512. doi: 10.1016/j.tetlet.2010.06.092

    48. [48]

      (48) Smith, M. B.; March, J. March ′s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed.;Wiley: New Jersey, 2007; pp 54-55.

    49. [49]

      (49) Corry, A. J.; el, A.; Kenny, P. T. M. Inorg. Chim. Acta 2012, 384, 293. doi: 10.1016/j.ica.2011.12.021

    50. [50]

      (50) Schaarschmidt, D.; Hildebrandt, A.; Bock, S.; Lang, H. Journal of Organometallic Chemistry 2014, 751, 742. doi: 10.1016/j.jorganchem.2013.07.080

    51. [51]

      (51) Liu, S. G.; Perez, I.; Martin, N.; Eche yen, L. J. Org. Chem. 2000, 65, 9092. doi: 10.1021/jo001149w

    52. [52]

      (52) Schubert, C.;Wielopolski, M.; Mewes, L. H.; Rojas, G. D. M.; Pol, C. V. D.; Moss, K. C.; Bryce, M. R.; Moser, J. E.; Clark, T.; Guldi, D. M. Chem. Eur. J. 2013, 19, 7575. doi: 10.1002/chem.201204055

    53. [53]

      (53) Justin, T. K. R.; Lin, J. T.;Wen, Y. S. Organometallics 2000, 19, 1008. doi: 10.1021/om9908635

    54. [54]

      (54) Levanda, C.; Bechgaard, K.; Cowan, D. O. J. Org. Chem. 1976, 41, 2700. doi: 10.1021/jo00878a008

    55. [55]

      (55) Ribou, A. C.; Launay, J. P.; Sachtleben, M. L.; Li, H.; Spangler, C.W. Inorg. Chem. 1996, 35, 3735. doi: 10.1021/ic951376u

    56. [56]

      (56) Glendening, E. D.; Landis, C. R.;Weinhold, F. Journal of Computational Chemistry 2013, 34, 1429. doi: 10.1002/jcc.23266

    57. [57]

      (57) Weinhold, F. Journal of Computational Chemistry 2012, 33, 2363. doi: 10.1002/jcc.v33.30

    58. [58]

      (58) Reed, A. E.;Weinhold, F. J. Chem. Phys. 1985, 84, 1736.

    59. [59]

      (59) Reed, A. E.;Weinhold, F. J. Chem. Phys. 1986, 84, 5687. doi: 10.1063/1.449928

    60. [60]

      (60) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    61. [61]

      (61) Smith, M. B.; March, J. March ′s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed.;Wiley: New Jersey, 2007; pp 19-20.

    62. [62]

      (62) etsch,W. R.; Solntsev, P. V.; Stappen, C. V.; Purchel, A. A.; Dudkin, S. V.; Nemykin, V. N. Organometallics 2014, 33, 145. doi: 10.1021/om400901w

    63. [63]

      (63) Fink, H.; Long, N. J.; Martin, A. J.; Opromolla, G.; White, A. J. P.;Williams, D. J.; Zanello, P. Organometallics 1997, 16, 2646. doi: 10.1021/om9701027

    64. [64]

      (64) Patoux, C.; Coudret, C.; Launay, J. P.; Joachim, C.; urdon, A. Inorg. Chem. 1997, 36, 5037. doi: 10.1021/ic970013m

    65. [65]

      (65) Chen, Y. J.; Pan, D. S.; Chiu, C. F.; Su, J. X.; Lin, S. J.; Kwan, K. S. Inorg. Chem. 2000, 39, 953. doi: 10.1021/ic991084j


  • 加载中
    1. [1]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    2. [2]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    5. [5]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    6. [6]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    11. [11]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    12. [12]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    13. [13]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(373)
  • Abstract views(609)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return