Citation: YUE Ling, HE Zi-Meng, WANG Yu-Qin, SHANG Ya-Zhuo, LIU Hong-Lai. Effect of the Surfactant C12mimBr on the Aggregation Behavior of Gemini12-2-12 at an Air/Water Interface, Investigated Using an Interfacial Dilational Rheology Method[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2291-2299. doi: 10.3866/PKU.WHXB201410222 shu

Effect of the Surfactant C12mimBr on the Aggregation Behavior of Gemini12-2-12 at an Air/Water Interface, Investigated Using an Interfacial Dilational Rheology Method

  • Received Date: 29 September 2014
    Available Online: 22 October 2014

    Fund Project: 国家自然科学基金(21173079, 91334203, 21476072)资助项目 (21173079, 91334203, 21476072)

  • The dynamic interfacial tension, dilational rheological properties, and interfacial relaxation processes of quaternary ammonium Gemini surfactant C12-(CH2)2-C12·2Br (Gemini12-2-12) solutions and Gemini12-2-12/ ionic liquid surfactant C12mimBr mixed systems at an air/water interface were investigated using an interfacial dilational rheology method at low frequencies (0.02-0.50 Hz). The effect of the C12mimBr on the interfacial properties of the Gemini12-2-12/C12mimBr mixed systems, and the mechanism responsible for the influence of C12mimBr on the aggregation behavior of the Gemini12-2-12 at the air/water interface, are discussed here. The experimental results showed that with increasing the amount of C12mimBr, the time required to achieve interfacial adsorption equilibrium for the mixed systems was reduced, the dilational moduli and phase angle in the mixed systems decreased, and the interfacial adsorption films were inclined to become elastic. Simultaneously, the relaxation processes at the interface or near the interface changed significantly, the slow relaxation process disappeared, and a fast relaxation process dominated the properties of the interfacial films. Moreover, the contribution of the fast relaxation process increased with increasing the concentration of C12mimBr. The abovementioned changes in the interfacial properties were mainly attributed to the participation of the C12mimBr in the formation of the interface, and the competitive adsorption of the two surfactants at the air/water interface. At lower concentrations of C12mimBr, the C12mimBr molecules filled the vacancies between the Gemini12-2-12 molecules when the Gemini12-2-12 molecules were loosely arranged at the interface, and mixedadsorption films formed from C12mimBr and Gemini12-2-12 spread on the air/water interface. With increasing the concentration of C12mimBr, the alkyl chains of the Gemini12-2-12 molecules that were wrapped around each other at the air/water interface untangled, and the Gemini12-2-12 molecules underwent desorption from the interface. At the same time, C12mimBr molecules replaced Gemini12-2-12 molecules, because of their low steric hindrance and strong hydrophobic effects; ultimately, C12mimBr molecules almost entirely occupied the air/water interface.

  • 加载中
    1. [1]

      (1) Wu, S. S. Chemical World 1990, 1, 44. [吴树森. 化学世界, 1990, 1, 44.]

    2. [2]

      (2) Li, H. Z. The Chinese Journal of Process Engineering 2006, 6 (6), 991. [李洪钟. 过程工程学报, 2006, 6 (6), 991.]

    3. [3]

      (3) Richardson, R. M.; Pelton, R.; Cosgrove, T.; Zhang, J. Macromolecules 2000, 33, 6269. doi: 10.1021/ma000095p

    4. [4]

      (4) Noskov, B. A.; Alexandrov, D. A.; Loglio, G.; Miller, R. Colloids Surf. A 1999, 156, 307. doi: 10.1016/S0927-7757(99)00082-5

    5. [5]

      (5) Bonfillon, A.; Langevin, D. Langmuir 1993, 9, 2172. doi: 10.1021/la00032a045

    6. [6]

      (6) Bonfillon, A.; Langevin, D. Langmuir 1994, 10, 2965. doi: 10.1021/la00021a020

    7. [7]

      (7) Regismond, T. A.; Gracie, K. D.;Winnik, F. M.; ddard, E. D. Langmuir 1997, 13, 5558. doi: 10.1021/la9702289

    8. [8]

      (8) Babak, V. G.; Merkovich, E. A.; Galbraikh, L. S. Mendeleev Commun. 2000, 94.

    9. [9]

      (9) Babak, V. G.; Lukina, I.; Vikhoreva, G. A.; Desbrieres, J.; Rinaudo, M. Colloids Surf. A 1999, 147, 139. doi: 10.1016/S0927-7757(98)00752-3

    10. [10]

      (10) Babak, V. G.; Desbrieres, J. Colloid Polym. Sci. 2006, 284, 745. doi: 10.1007/s00396-005-1427-x

    11. [11]

      (11) Babak, V. G.; Baros, F.; Boury, F.; Desbrieres, J.; Vikhoreva, G. A. Mendeleev Commun. 2008, 18, 35. doi: 10.1016/j.mencom.2008.01.014

    12. [12]

      (12) Babak, V. G.; Auzely, R.; Rinaudo, M. J. Phys. Chem. B 2007, 111, 9519. doi: 10.1021/jp0718653

    13. [13]

      (13) Noskov, B. A.; Loglio, G.; Miller, R. J. Phys. Chem. B 2004, 108, 18615. doi: 10.1021/jp046560s

    14. [14]

      (14) Noskov, B. A.; Lin, S. Y.; Loglio, G.; Rubio, R. G.; Miller, R. Langmuir 2006, 22, 2647. doi: 10.1021/la052662d

    15. [15]

      (15) Fainerman, V. B.; Petkov, J. T.; Miller, R. Langmuir 2008, 24, 6447. doi: 10.1021/la704058y

    16. [16]

      (16) Noskov, B. A.; Gri riev, D. O.; Latnikova, A. V.; Lin, S. Y.; Loglio, G.; Miller, R. J. Phys. Chem. B 2009, 113, 13398. doi: 10.1021/jp905413q

    17. [17]

      (17) Fainerman, V. B.; Aksenenko, E. V.; Zholob, S. A.; Petkov, J. T.; Yorke, J.; Miller, R. Langmuir 2010, 26, 1796. doi: 10.1021/la9024926

    18. [18]

      (18) Fang, H. B.; Zong, H.; Mao, L. T.; Zhang, L.; Cui, G. Z.; Zhao, S.; Yu, J. Y. J. Dis. Sci. Technol. 2010, 31, 1652.

    19. [19]

      (19) Zhou, Z. H.; Zhang, L.; Xu, Z. C.; Zhao, S.; Yu, J. Y. J. Dis. Sci. Technol. 2011, 32, 95.

    20. [20]

      (20) Wang, Z. L.; Li, Z. Q.; Zhang, L.; Huang, H. Y.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Chem. Eng. Data 2011, 56, 2393. doi: 10.1021/je1013312

    21. [21]

      (21) Zhang, J. C.; Zhang, L.;Wang, X. C.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Dis. Sci. Technol. 2011, 32, 372. doi: 10.1080/01932691003662381

    22. [22]

      (22) Song, X.W.; Zhang, L.;Wang, X. C.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Dis. Sci. Technol. 2011, 32, 247. doi: 10.1080/01932691003657001

    23. [23]

      (23) Cui, X. H.; Zhang, L.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. Colloids Surf. A 2010, 369, 106. doi: 10.1016/j.colsurfa.2010.08.012

    24. [24]

      (24) Sun, H. Q.; Zhang, L.; Zhao, S.; Yu, J. Y. J. Dis. Sci. Technol. 2011, 32, 389. doi: 10.1080/01932691003662407

    25. [25]

      (25) Ma, B. D.; Zhang, L.; Gao, B. Y.; Zhao, S.; Yu, J. Y. Colloid Polym. Sci. 2011, 289, 911. doi: 10.1007/s00396-011-2415-y

    26. [26]

      (26) He, F.; Xu, G. Y.; Pang, J. Y.; Ao, M. Q.; Han, T. T.; ng, H. J. Langmuir 2011, 27, 538. doi: 10.1021/la103478c

    27. [27]

      (27) Zhu, Y. Y.; Xu, G. Y.; Xin, X.; Zhang, H. X.; Shi, X. F. J. Chem. Eng. Data 2009, 54, 989. doi: 10.1021/je800788f

    28. [28]

      (28) Che, Y. J.; Cao, J.; ng, H. J.; Xu, G. Y.; Tan, Y. B. J. Dis. Sci. Technol. 2011, 32, 174. doi: 10.1080/01932691003656698

    29. [29]

      (29) Pei, X. M.; You, Y.; Zhao, J. X.; Deng, Y. S.; Li, E. J.; Li, Z. X. J. Colloid Interface Sci. 2010, 351, 457. doi: 10.1016/j.jcis.2010.07.076

    30. [30]

      (30) You, Y.; Zhong, B. X.; Zhao, J. X. Colloid Polym. Sci. 2010, 288, 1359. doi: 10.1007/s00396-010-2265-z

    31. [31]

      (31) Zhao, J. X.; Deng, Y. S.; Pei, X. M. Colloids Surf. A 2010, 369, 34. doi: 10.1016/j.colsurfa.2010.07.027

    32. [32]

      (32) Wu, X. N.; Zhao, J. X.; Li, E. J.; Zou,W. S. Colloid Polym. Sci. 2011, 289, 1025. doi: 10.1007/s00396-011-2425-9

    33. [33]

      (33) Angle, C.W.; Hua, Y. J. Energy Fuels 2012, 26, 6228. doi: 10.1021/ef300846z

    34. [34]

      (34) Angle, C.W.; Hua, Y. J. Energy Fuels 2013, 27, 3613. doi: 10.1021/ef4003928

    35. [35]

      (35) Reichert, M. D.;Walker, L. M. Langmuir 2013, 29, 1857. doi: 10.1021/la4000395

    36. [36]

      (36) Takajo, Y.; Yamanaka, M.; Rubio, R. G.; Takiue, T.; Matsubara, H.; Aratono, M. J. Phys. Chem. C 2013, 117, 1097. doi: 10.1021/jp311283a

    37. [37]

      (37) Zana, R.; Benrraou, M.; Rueff, R. Langmuir 1991, 7, 1072. doi: 10.1021/la00054a008

    38. [38]

      (38) Lucassen, J.; Van Den Tempel, M. Chemical Engineering Science 1972, 27, 1283. doi: 10.1016/0009-2509(72)80104-0

    39. [39]

      (39) Lucassen-Reynders, E. H. Anionic Surfactants; MercelDekker: Inc.: New York, 1981, p 173.

    40. [40]

      (40) van den Tempel, M.; Lucassen-Reynders, E. H. Advances in Colloid and Interface Science 1983, 18, 281. doi: 10.1016/0001-8686(83)87004-3

    41. [41]

      (41) Wu, D.; Feng, Y. J.; Xu, G. Y.; Chen, Y. J.; Cao, X. R.; Li, Y. M. Colloids Surf. A 2007, 299, 117. doi: 10.1016/j.colsurfa.2006.11.031

    42. [42]

      (42) Zhang, L.;Wang, X. C.; Yan, F.; Luo, L.; Zhang, L.; Zhao, S.; Yu, J. Y. Colloid Polym. Sci. 2008, 286, 1291. doi: 10.1007/s00396-008-1894-y

    43. [43]

      (43) Cao, C.; Huang, T.; Zhang, L.; Du, F. P. Colloids Surf. A 2013, 436, 557. doi: 10.1016/j.colsurfa.2013.07.013

    44. [44]

      (44) Zhang, L.;Wang, X. C.; Yan, F. Colloid Polym. Sci. 2008, 286, 1291. doi: 10.1007/s00396-008-1894-y

    45. [45]

      (45) Dou, L. X.; Cheng, J. B. Chemical Journal of Chinese Universities 2010, 31 (2), 361 [窦立霞, 程建波. 高等学校化学学报, 2010, 31 (2), 361.]

    46. [46]

      (46) Zhang, C. R.; Li, Z. Q.; Luo, L.; Zhang, L.; Song, X.W.; Cao, X. L.; Zhao, S.; Yu, J. Y. Acta Phys. -Chim. Sin. 2007, 23 (2), 247. [张春荣, 李振泉, 罗澜, 张路, 宋新旺, 曹绪龙, 赵濉, 俞稼镛. 物理化学学报, 2007, 23 (2), 247.] doi: 10.3866/PKU.WHXB20070221


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    3. [3]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    4. [4]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    5. [5]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    6. [6]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    7. [7]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    8. [8]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    9. [9]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Yan Yuan Haitao Wu Yi Zhang Li Jiang Feng Cao Yanmao Dong . Research on the Talent Training System to Enhance the Core Competence of Employment for Undergraduate Students Majoring in Materials Chemistry. University Chemistry, 2024, 39(11): 52-56. doi: 10.12461/PKU.DXHX202402015

    14. [14]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    15. [15]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    16. [16]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    17. [17]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    18. [18]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(478)
  • Abstract views(536)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return