Citation: LI Dan, XUE Jia-Dan, ZHENG Xu-Ming. Excited State Structural Dynamics of A-Band of 4-Nitroimidazole[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2216-2223. doi: 10.3866/PKU.WHXB201410221 shu

Excited State Structural Dynamics of A-Band of 4-Nitroimidazole

  • Received Date: 12 September 2014
    Available Online: 22 October 2014

    Fund Project: 国家自然科学基金(21033002, 21202032) (21033002, 21202032)国家重点基础研究发展规划项目(973) (2013CB834604)资助 (973) (2013CB834604)

  • The A-band structural dynamics of 4-nitroimidazole (4NI) were studied using resonance Raman spectroscopy and quantum mechanical calculations, and the vibrational spectra, UV absorption spectra, fluorescence spectra, and A-band resonance Raman spectra were assigned. The resonance Raman spectra of 4-nitroimidazole were obtained in methanol with excitation wavelengths in resonance with the first intense absorption band, to probe the short-time structural dynamics. The optimized geometric structures and the excitation energies of the singlet excited states S1(nOπ*) and S2(ππ*), and the conical intersection point S1(nOπ*)/S2(ππ*), were computed at the complete active space self-consistent field (CASSCF)/6-31G(d) theory level. The intensity patterns of the A-band resonance Raman spectra were analyzed, and the results, together with those of the CASSCF calculations, revealed that the major decay channel initiated from the S2(ππ*) state was S2, FCS2, min(ππ*)→S0 radiation.

  • 加载中
    1. [1]

      (1) Sobolewski, A. L.; Domcke,W.; Dedonder-Lardeux, C.; Jouvet, C. Phys. Chem. Chem. Phys. 2002, 4, 1093. doi: 10.1039/b110941n

    2. [2]

      (2) Gianola, A. J.; Ichino, T.; Kato, S.; Bierbaum, V. M.; Lineberger,W. C. J. Phys. Chem. A 2006, 110, 8457. doi: 10.1021/jp057499+

    3. [3]

      (3) King, G. A.; Oliver, T. A. A.; Nix, M. G. D.; Ashfold, M. N. R. J. Chem. Phys. 2010, 132, 064305. doi: 10.1063/1.3292644

    4. [4]

      (4) Devine, A. L.; Cronin, B.; Nix, M. G. D.; Ashfold, M. N. R. J. Chem. Phys. 2006, 125, 184302. doi: 10.1063/1.2364504

    5. [5]

      (5) Crespo-Otero, R.; Barabatti, M.; Yu, H.; Evans, N. L.; Ullrich, S. ChemPhysChem 2011, 17, 3365.

    6. [6]

      (6) Barbatti, M.; Lischka, H.; Salzmann, S.; Marian. C. M. J. Chem. Phys. 2009, 130, 034305. doi: 10.1063/1.3056197

    7. [7]

      (7) Yu, H.; Evans, N. L.; Stavros, V. G.; Ullrich, S. Phys. Chem. Chem. Phys. 2012, 14, 6266. doi: 10.1039/c2cp23533a

    8. [8]

      (8) Montero, R.; Conde, A. P.; Ovejas, V.; Fernández-Fernández, M.; Castaño, F.; Longarte, A. J. Phys. Chem. A 2012, 116, 10752. doi: 10.1021/jp3078198

    9. [9]

      (9) Robin, M. R. Higher Excited States of Polyatomic Molecules; Academic Press: New York, 1975; Vol. II, p 251.

    10. [10]

      (10) Kröhl, O.; Malsch, K.; Swiderek, P. Phys. Chem. Chem. Phys. 2000, 2, 947. doi: 10.1039/a909290k

    11. [11]

      (11) Galloway, D. B.; Bartz, J. A.; Huey, L. G.; Crim, F. F. J. Chem. Phys. 1993, 98, 2107. doi: 10.1063/1.464188

    12. [12]

      (12) Clenewinkel-Meyer, T.; Crim, F. F. J. Mol. Struct.: Theochem 1995, 337, 209. doi: 10.1016/0166-1280(94)04087-9

    13. [13]

      (13) Li, Y. M.; Sun, J. L.; Yin, H. M.; Han, K. L.; He, G. Z. J. Chem. Phys. 2003, 118, 6244. doi: 10.1063/1.1557932

    14. [14]

      (14) Zhang, S. Q.;Wang, Y. Q.; Zheng, X. M. Acta Phys. -Chim. Sin. 2006, 22, 1489. [张树强, 王雅琼, 郑旭明. 物理化学学报, 2006, 22, 1489.] doi: 10.3866/PKU.WHXB20061211

    15. [15]

      (15) Castle, K. J.; Abbott, J.; Peng, X. Z.; Kong,W. J. Chem. Phys. 2000, 113, 1415. doi: 10.1063/1.481931

    16. [16]

      (16) Kosmidis, C.; Ledingham, K.W. D.; Kilic, H. S.; McCanny, T.; Singhal, R. P.; Langley, A. J.; Shaikh,W. J. Phys. Chem. A 1997, 101, 2264. doi: 10.1021/jp963187i

    17. [17]

      (17) Shao, J.; Baer, T. Int. J. Mass Spectrom. Ion. Process. 1988, 86, 357. doi: 10.1016/0168-1176(88)80078-8

    18. [18]

      (18) Marshall, A.; Clark, A.; Ledingham, K.W. D.; Sander, J.; Singhal, R. P. Int. J. Mass Spectrom. Ion. Process. 1993, 125, R21.

    19. [19]

      (19) Zhang, S. Q.;Wang, Y. Q.; Zheng, X. M. J. Chem. Phys. 2007, 126, 194505. doi: 10.1063/1.2736685

    20. [20]

      (20) Zhu, X. M.; Zhang, S. Q.; Zheng, X. M.; Phillips, D. L. J. Phys. Chem. A 2005, 109, 3086.

    21. [21]

      (21) Yin, M.; Shu, Y. J.; Xiong, Y.; Luo, S. K.;Wang, P.; Long, X. P.; Zhu, Z. L. Acta Chim. Sin. 2008, 66, 2117. [殷明, 舒远杰,熊鹰, 罗世凯, 王苹, 龙新平, 朱祖良. 化学学报, 2008, 66, 2117.]

    22. [22]

      (22) Arjunana, V.; Ravindranb, P.; Santhanama, R.; Raja, A.; Mohanc, S. Molecular and Biomolecular Spectroscopy 2012, 97, 176. doi: 10.1016/j.saa.2012.05.072

    23. [23]

      (23) Weng, K. F.;Wang, H. G.; Zhu, X. M.; Zheng, X. M. Acta Phys. -Chim. Sin. 2009, 25, 1799. [翁克凤, 王惠钢, 祝新明,郑旭明. 物理化学学报, 2009, 25, 1799.] doi: 10.3866/PKU.WHXB20090825

    24. [24]

      (24) Myers, A. B.; Li, B.; Ci, X. J. Chem. Phys. 1988, 89, 1876. doi: 10.1063/1.455135

    25. [25]

      (25) Wojcik, M. J.; Kwiendacz, J.; Boczar, M.; Boda, L.; Ozaki, Y. Chemical Physics 2010, 372, 72. doi: 10.1016/j.chemphys.2010.04.034


  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    11. [11]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    12. [12]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    13. [13]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    14. [14]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    17. [17]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    18. [18]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    19. [19]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    20. [20]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

Metrics
  • PDF Downloads(349)
  • Abstract views(449)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return