Citation: WU Yue, LIU Xing-Quan, ZHANG Zheng, ZHAO Hong-Yuan. Preparation and Characterization of M(Ⅱ) and M(Ⅳ) Iso-Molar Co-Doped LiMn1.9Mg0.05Ti0.05O4 Cathode Materials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2283-2290. doi: 10.3866/PKU.WHXB201410132 shu

Preparation and Characterization of M(Ⅱ) and M(Ⅳ) Iso-Molar Co-Doped LiMn1.9Mg0.05Ti0.05O4 Cathode Materials for Lithium-Ion Batteries

  • Received Date: 9 July 2014
    Available Online: 13 October 2014

    Fund Project: 国家自然科学基金(21071026) (21071026)电子科技大学杰出人才引进项目(08JC00303)资助 (08JC00303)

  • An Mg(Ⅱ) and Ti(Ⅳ), iso-molar, co-doped cathode material LiMn1.9Mg0.05Ti0.05O4 for lithium-ion batteries was successfully synthesized via a sol-gel method, using lithium hydroxide, manganese acetate, magnesium nitrate, and butyl titanate as raw materials, and citric acid as a chelating agent. The as-prepared materials were characterized using thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical tests (including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements). The results demonstrated that the cathode material LiMn1.9Mg0.05Ti0.05O4, which was obtained after calcination at 780℃ for 12 h, exhibited a fine microstructure and od electrochemical performance. When cycled at 4.35-3.30 V at room temperature, LiMn1.9Mg0.05Ti0.05O4 delivered a discharge specific capacity of 126.8 mAh·g-1 at 0.5C rate, and maintained a capacity of 118.5 mAh·g-1 after 50 cycles; the capacity retention of this material reached 93.5%. This material showed a discharge-specific capacity of 111.9 mAh·g-1 at 0.5C rate after 30 cycles, when it was cycled at 55℃; under these conditions the capacity retention reached 91.9%, far superior to the capacity retention of undoped LiMn2O4. The iso-molar co-doping of LiMn2O4 with Mg(Ⅱ) and Ti(Ⅳ) ions led to significant modification of the electronic and ionic conductivity, and increased the rate properties and electrochemical performance of the spinel lithium manganate at elevated temperatures.

  • 加载中
    1. [1]

      (1) Wang, Z. P.; Sun, F. C. Transaction of Beijing Institute of Technology 2004, 24 (12), 1053. [王震坡, 孙逢春. 北京理工大学学报, 2004, 24 (12), 1053.]

    2. [2]

      (2) Dunn, B.; Kamath, H.; Tarascon, J. Science 2011, 334 (6058), 928. doi: 10.1126/science.1212741

    3. [3]

      (3) Saft, M.; Chagnon, G.; Faugeras, T.; Sarre, G.; Morhet, P. J. Power Sources 1999, 80 (1-2), 180.

    4. [4]

      (4) Tarascon, J. M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644

    5. [5]

      (5) Mukherjee, R.; Krishnan, R.; Lu, T. M.; Koratkar, N. Nano Energy 2012, 1 (4), 518. doi: 10.1016/j.nanoen.2012.04.001

    6. [6]

      (6) Park, O. K.; Cho, Y.; Lee, S.; Yoo, H.; Song, H.; Cho, J. Energy Environ. Sci. 2011, 4 (5), 1621. doi: 10.1039/c0ee00559b

    7. [7]

      (7) Patey, T. J.; Büchel, R.; Ng, S. H.; Krumeich, F.; Pratsinis, S. E.; Novák. P. J. Power Sources 2009, 189, 149. doi: 10.1016/j.jpowsour.2008.10.002

    8. [8]

      (8) Shi, Z. C.; Li, C.; Yang, Y. Electrochemistry 2003, 9 (1), 9. [施志聪, 李晨, 杨勇. 电化学, 2003, 9 (1), 9.]

    9. [9]

      (9) Fedorkorva, A.; Nacher-Alejos, A.; mez-Romero, P. Electrochim. Acta 2010, 55, 943. doi: 10.1016/j.electacta.2009.09.060

    10. [10]

      (10) Yi, T. F.; Yue, C. B.; Zhu, Y. R.; Zhu, R. S.; Hu, X. G. Rare Metal Materials and Engineering 2009, 38 (9), 1687. [伊廷锋, 岳彩波, 朱彦荣, 诸荣孙, 胡信国. 稀有金属材料与工程, 2009, 38 (9), 1687.]

    11. [11]

      (11) Wang, Z. X.; Xing, Z. J.; Li, X. H.; Guo, H. J.; Peng,W. J. Acta Phys. -Chim. Sin. 2004, 20 (8), 790. [王志兴, 邢志军, 李新海, 郭华军, 彭文杰. 物理化学学报, 2004, 20 (8), 790.] doi: 10.3866/PKU.WHXB20040802

    12. [12]

      (12) Xu, C. Q.; Tian, Y.W.; Zhai, Y. C. Journal of Materials and Metallurgy 2002, 1 (4), 243. [徐茶青, 田彦文, 翟玉春. 材料与冶金学报, 2002, 1 (4), 243.]

    13. [13]

      (13) Amatucci, M.; Tarascon, J. M. J. Electrochem. Soc. 2002, 149 (12), K31.

    14. [14]

      (14) Amatucci, G. G.; Pereira, N.; Zheng, T.; Tarascon, J. M. J. Electrochem. Soc. 2001, 148 (2), A171.

    15. [15]

      (15) Hong, Y. S.; Han, C. H.; Kim, K.; Kwon, C.W.; Campet, G.; Choy, J. H. Solid State Ionics 2001, 139 (1-2), 75. doi: 10.1016/S0167-2738(00)00821-3

    16. [16]

      (16) Fey, G. T. K.; Lu, C. Z.; Kumar, T. P. J. Power Sources 2003, 115, 332. doi: 10.1016/S0378-7753(03)00010-7

    17. [17]

      (17) Liu, Q. S.; Yu, L. H.;Wang, H. H. J. Alloy. Compd. 2009, 486, 886. doi: 10.1016/j.jallcom.2009.07.087

    18. [18]

      (18) Kou, D.; Liu, X. Q.; Zhang, Z.; Liu, H. J.;Wang, C. Science & Technology in Chemical Industry 2012, 20 (6), 1. [寇丹, 刘兴泉, 张峥, 刘宏基, 王超. 化工科技, 2012, 20 (6), 1.]

    19. [19]

      (19) Kang, K.; Dai, S. H.;Wan, Y. H. J. Funct. Mater. 2000, 31 (3), 283. [康慨, 戴受惠, 万玉华. 功能材料, 2000, 31 (3), 283.]

    20. [20]

      (20) Du, R. B.; Liu, T.; Kong, X. J. Chin. J. Rare Metals 2009, 33 (4), 553. [杜荣斌, 刘涛, 孔学军. 稀有金属, 2009, 33 (4), 553.]

    21. [21]

      (21) Wang, Y. M.; Bao, F. Y.; Hou, X. G.; Zhou, J. China Powder Science and Technology 2009, 15 (4), 49. [王玉棉, 包飞燕, 侯新刚, 邹杰. 中国粉体技术, 2009, 15 (4), 49.]

    22. [22]

      (22) Liu, X. M.; Huang, Z. D.; Oh, S.; Ma, P. C. J. Power Sources 2010, 195 (13), 4290. doi: 10.1016/j.jpowsour.2010.01.068

    23. [23]

      (23) Michalska, M.; Lipinska, L.; Mirkowska, M.; Aksieniongek, M.; Diduszko, R.;Wasiucionek, M. Solid State Ionics 2011, 188 (1), 160. doi: 10.1016/j.ssi.2010.12.003

    24. [24]

      (24) Chen, K.; Donahoe, A. C.; Noh, Y. D.; Li, K.; Komarneni, S.; Xue, D. Ceram. Int. 2014, 40 (2), 3155. doi: 10.1016/j.ceramint.2013.09.128

    25. [25]

      (25) Son, J. T.; Kim, H. G.; Park, Y. Electrochim. Acta 2004, 50, 453.

    26. [26]

      (26) Shen, P.; Huang, Y.; Liu, L.; Jia, D. J. Solid State Electr. 2006, 10 (11), 929. doi: 10.1007/s10008-005-0039-1

    27. [27]

      (27) Prabu, M.; Reddy, M. V.; Selvasekarapandian, S.; Subba Rao, G. V.; Chowdari, B. V. R. Electrochim. Acta 2013, 88, 745. doi: 10.1016/j.electacta.2012.10.011

    28. [28]

      (28) Lee, D. K.; Han, S. C.; Ahn, D.; Singh, S. P.; Sohn, K. S.; Pyo, M. ACS Appl. Mater. Inter. 2012, 4 (12), 6841.

    29. [29]

      (29) Hu, G. J.; Ouyang, C. Y. Acta Phys. Sin. 2010, 59 (8), 5864. [胡国进, 欧阳楚英. 物理学报, 2010, 59 (8), 5864.]

    30. [30]

      (30) Huang, B.; Li, X.;Wang, Z.; Guo, H.; Xiong, X.;Wang, J. J. Alloy. Compd. 2014, 583, 313. doi: 10.1016/j.jallcom.2013.08.157

    31. [31]

      (31) Wang, Z. P.; Liu,W.;Wang, Y.; Zhao, C. S.; Zhang, S. P.; Chen, J. T.; Zhou, H. H.; Zhang, X. X. Acta Phys. -Chim. Sin. 2012, 28 (9), 2084. [王震坡, 刘文, 王悦, 赵春松, 张淑萍, 陈继涛, 周恒辉, 张新祥. 物理化学学报, 2012, 28 (9), 2084.] doi: 10.3866/PKU.WHXB201207043

    32. [32]

      (32) Xiao, L.; Guo, Y.; Qu, D.; Deng, B.; Liu, H.; Tang, D. J. Power Sources 2013, 225, 286. doi: 10.1016/j.jpowsour.2012.10.070

    33. [33]

      (33) Singh, S.; Mitra, S. Electrochim. Acta 2014, 123, 378. doi: 10.1016/j.electacta.2014.01.045

    34. [34]

      (34) Ohzuku, T.; Kitagawa, M.; Hirai, T. J. Electrochem. Soc. 1990, 137 (3), 769. doi: 10.1149/1.2086552

    35. [35]

      (35) Zhuang, Q. C.;Wei, T.;Wei, G. Z.; Dong, Q. F.; Sun, S. G. Acta Chim. Sin. 2009, 67 (19), 2184. [庄全超, 魏涛, 魏国祯,董全峰, 孙世刚. 化学学报, 2009, 67 (19), 2184.]

    36. [36]

      (36) Xia, Y. Y.; Sakai, T.; Fujieda, T.; Yang, X. Q. J. Electrochem. Soc. 2001, 148 (7), A723.

    37. [37]

      (37) Xiong, L.; Xu, Y.; Tao, T.; odenough, J. B. J. Power Sources 2012, 199, 214. doi: 10.1016/j.jpowsour.2011.09.062


  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    13. [13]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(307)
  • Abstract views(555)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return