Citation: LUO Yun-Qing, QIU Mei, YANG Wei, ZHU Jia, LI Yi, HUANG Xin, ZHANG Yong-Fan. Configuration and Electronic Structure of W3O9 Clusters Supported on Li- and Al-Doped M (001) Surfaces[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2224-2232. doi: 10.3866/PKU.WHXB201410101 shu

Configuration and Electronic Structure of W3O9 Clusters Supported on Li- and Al-Doped M (001) Surfaces

  • Received Date: 28 July 2014
    Available Online: 10 October 2014

    Fund Project: 国家自然科学基金(21373048, 21371034, 21403094) (21373048, 21371034, 21403094) 福建省杰出青年科学基金(2013J06004) (2013J06004)江西省教育厅(GJJ14261)资助项目 (GJJ14261)

  • The configuration, stability, and electronic structure of W3O9 clusters deposited on Li- and Al-doped M (001) surfaces were investigated using first- principles molecular dynamic simulations combined with quantum mechanical calculations. The results indicated that when the doping was in the top layer of the M (001) surface, the type of dopant had a great influence on the configuration of theW3O9 clusters. In the presence of electron-deficient Li doping, the cyclic conformation of the gas-phase W3O9 clusters was not stable, and it changed to a chain-like structure. While the introduction of the Al dopant made the surface electron-rich, the W3O9 clusters preferred parallel and vertical arrangements, respectively; the stabilities of the two configurations were similar, except that in the former case the one terminal oxygen of the clusters became a capped oxygen via bonding with three W atoms. When the doping was present in the sublayer, the W3O9 clusters still showed a cyclic conformation, and favored a vertical deposition model. In comparison with the Li-doping of the M (001) surface, the Al-doping significantly enhanced the interactions between theW3O9 and the M (001) surface, and more electrons were transferred from the substrate to certain W atoms, which would have significant effects on the catalytic performance of the W3O9 clusters.

  • 加载中
    1. [1]

      (1) Lebarbier, V.; Clet, G.; Houalla, M. J. Phys. Chem. B 2006, 110, 22608. doi: 10.1021/jp064202e

    2. [2]

      (2) Kim, Y. K.; Rousseau, R.; Kay, B. D.; White, J. M.; Dohnálek, K. J. Am. Chem. Soc. 2008, 130, 5059. doi: 10.1021/ja800730g

    3. [3]

      (3) Li, S.; Li, Z.; Zhang, Z.; Kay, B. D.; Rousseau, R.; Dohnálek, Z. J. Phys. Chem. C 2012, 116, 908. doi: 10.1021/jp2093324

    4. [4]

      (4) Meijers, S.; Gielgens, L. H.; Ponec, V. J. Catal. 1995, 156, 147. doi: 10.1006/jcat.1995.1240

    5. [5]

      (5) Yoshinaga, Y.; Kudo, M.; Hasegawa, S.; Okuhara, T. Appl. Surf. Sci. 1997, 121, 339.

    6. [6]

      (6) Bondarchuk, O.; Huang, X.; Kim, J.; Kay, B. D.;Wang, L. S.; White, J. M.; Dohnálek, Z. Angew. Chem. Int. Edit. 2006, 45, 4786.

    7. [7]

      (7) Li, Z. J.; Zhang, Z. R.; Kim, Y. K.; Smith, R. S.; Netzer, F.; Kay, B. D.; Rousseau, R.; Dohnalek, Z. J. Phys. Chem. C 2011, 115, 5773. doi: 10.1021/jp1108976

    8. [8]

      (8) Wagner, M.; Surnev, S.; Ramsey, M. G.; Barcaro, G.; Sementa, L.; Negreiros, F. R.; Fortunelli, A.; Dohnalek, Z.; Netzer, F. P. J. Phys. Chem. C 2011, 115, 23480. doi: 10.1021/jp208207e

    9. [9]

      (9) Zhu, J.; Lin, S.;Wen, X.; Fang, Z.; Li, Y.; Zhang, Y.; Huang, X.; Ning, L.; Ding, K.; Chen,W. J. Chem. Phys. 2013, 138, 34711. doi: 10.1063/1.4776219

    10. [10]

      (10) Kwapien, K.; Paier, J.; Sauer, J. Angew. Chem. Int. Edit. 2014, 53, 8774. doi: 10.1002/anie.v53.33

    11. [11]

      (11) Myrach, P.; Nilius, N.; Levchenko, S. V.; nchar, A.; Risse, T.; Dinse, K.; Boatner, L. A.; Frandsen,W.; Horn, R.; Freund, H.; Schlögl, R.; Scheffler, M. ChemCatChem 2010, 2, 854. doi: 10.1002/cctc.201000083

    12. [12]

      (12) Lintuluoto, M.; Nakamura, Y. J. Mol. Struct. 2004, 674, 207. doi: 10.1016/j.theochem.2003.12.051

    13. [13]

      (13) Scanlon, D. O.;Walsh, A.; Morgan, B. J.; Nolan, M.; Fearon, J.; Watson, G.W. J. Phys. Chem. C 2007, 111, 7971. doi: 10.1021/jp070200y

    14. [14]

      (14) Shao, X.; Prada, S.; Giordano, L.; Pacchioni, G.; Nilius, N.; Freund, H. J. Angew. Chem. Int. Edit. 2011, 50, 11525. doi: 10.1002/anie.v50.48

    15. [15]

      (15) Ito, T.; Lunsford, J. H. Nature 1985, 314, 721.

    16. [16]

      (16) Wu, M. C.; Truong, C. M.; odman, D.W. Phys. Rev. B 1992, 46, 12688. doi: 10.1103/PhysRevB.46.12688

    17. [17]

      (17) Hutchings, G. J.; Scurrell, M. S.;Woodhouse, J. R. J. Chem. Soc. Chem. Commun. 1989, 765.

    18. [18]

      (18) Mammen, L.; Narasimhan, S.; de Gironcoli, S. J. Am. Chem. Soc. 2011, 133, 2801. doi: 10.1021/ja109663g

    19. [19]

      (19) Xiao, J. T.; Li, J. J.; Yin, Y.; Lin, Z. L.; Qi, K. C.;Wang, X. J.; Cao, G. C. Adv. Mater. Res. 2013, 815, 673. doi: 10.4028/www.scientific.net/AMR.815

    20. [20]

      (20) Sarmadian, N.; Saniz, R.; Lamoen, D.; Partoens, B. Phys. Rev. B 2012, 86, 205129. doi: 10.1103/PhysRevB.86.205129

    21. [21]

      (21) Prada, S.; Giordano, L.; Pacchioni, G. J. Phys. Chem. C 2012, 116, 5781. doi: 10.1021/jp211363q

    22. [22]

      (22) Stavale, F.; Nilius, N.; Freund, H. J. New. J. Phys. 2012, 14, 033006. doi: 10.1088/1367-2630/14/3/033006

    23. [23]

      (23) Prada, S.; Giordano, L.; Pacchioni, G. J. Phys. Chem. C 2013, 117, 9943. doi: 10.1021/jp401983m

    24. [24]

      (24) Pozzo, M.; Alfe, D. Int. J. Hydrog. Energy 2009, 34, 1922. doi: 10.1016/j.ijhydene.2008.11.109

    25. [25]

      (25) Pascual, J. L.; Savoini, B.; nzalez, R. Phys. Rev. B 2004, 70, 045109. doi: 10.1103/PhysRevB.70.045109

    26. [26]

      (26) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671

    27. [27]

      (27) Kresse, G.; Joubert, J. Phys. Rev. B 1999, 59, 1758.

    28. [28]

      (28) Causa, M.; Dovesi, R.; Pisani, C.; Roetti, C. Surf. Sci. 1986, 175, 551. doi: 10.1016/0039-6028(86)90012-9

    29. [29]

      (29) Blochl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953

    30. [30]

      (30) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169

    31. [31]

      (31) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0

    32. [32]

      (32) Nose, S. J. Chem. Phys. 1984, 81, 511. doi: 10.1063/1.447334

    33. [33]

      (33) Zhu, J.; Jin, H.; Chen,W.; Li, Y.; Zhang, Y.; Ning, L.; Huang, X.; Ding, K.; Chen,W. J. Phys. Chem. C 2009, 113, 17509. doi: 10.1021/jp906194t

    34. [34]

      (34) Zhang, Y.; Giordano, L.; Pacchioni, G. J. Phys. Chem. C 2007, 111, 7437.

    35. [35]

      (35) Maleknia, S.; Brodbelt, J.; Pope, K. J. Am. Soc. Mass Spectrom. 1991, 2, 212. doi: 10.1016/1044-0305(91)80046-A

    36. [36]

      (36) Li, S.; Hennigan, J. M.; Dixon, D. A.; Peterson, K. A. J. Phys. Chem. A 2009, 113, 7861.

    37. [37]

      (37) Huang, X.; Zhai, H. J.; Li, J.;Wang, L. S. J. Phys. Chem. A 2006, 110, 85.

    38. [38]

      (38) Huang, X.; Zhai, H. J.; Kiran, B.;Wang, L. S. Angew. Chem. Int. Edit. 2005, 44, 7251.

    39. [39]

      (39) Zhu, J.; Giordano, L.; Lin, S.; Fang, Z.; Li, Y.; Huang, X.; Zhang, Y.; Pacchioni, G. J. Phys. Chem. C. 2012, 116, 17668. doi: 10.1021/jp3051609

    40. [40]

      (40) Di Valentin, C.; Rosa, M.; Pacchioni, G. J. Am. Chem. Soc. 2012, 134, 14086. doi: 10.1021/ja304661g


  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    8. [8]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    17. [17]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(510)
  • Abstract views(660)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return