Citation: YAO Wen-Zhi, LU Zhang-Hui, LI Si-Dian. A Comparative Ab initio Study of the Geometric and Electronic Structures of B2Au4, Al2Au4 and BAlAu4[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2233-2240. doi: 10.3866/PKU.WHXB201409301 shu

A Comparative Ab initio Study of the Geometric and Electronic Structures of B2Au4, Al2Au4 and BAlAu4

  • Received Date: 23 June 2014
    Available Online: 30 September 2014

    Fund Project: 华北水利水电学院高层次人才科学研究基金(201114) (201114) 河南省教育厅重点科技项目(14A150024) (14A150024) 江西省教育厅重点科技项目(GJJ14230) (GJJ14230) 江西师范大学青年英才培育计划资助项目, 江西省青年科学家培养对象(20133BCB23011) (20133BCB23011) 江西省赣鄱英才555 工程和国家自然科学基金(21103074)资助 (21103074)

  • Au/H similarity is a hot topic in chemistry. Here, we report the theoretical prediction of new members of the Au/H analogy family: covalent B2Au4, ionic Al2Au4, and BAlAu4. A comparative study of the geometric and electronic structures of electron-deficient B2Au4, Al2Au4, and BAlAu4 was performed based on density and wave functional theories. Detailed orbital analyses, adaptive natural density partitioning (AdNDP), and electron localization function (ELF) analyses were performed. Ab initio theoretical evidence strongly suggests that the ground state of slightly distorted C2B2Au4 is a covalent complex containing two B―Au―B three centers-two electrons (3c-2e) bonds. Unexpectedly, C3vAl+(AlAu4)- and C3v Al+(BAu4)- are predicted to have a salt-like composition with three X―Au―Al 3c-2e bonds (X=Al in Al2Au4, X=B in BAlAu4). Al2Au4 and BAlAu4 represent the first examples of bridging ld bonds in ionic-deficient systems. The adiabatic and vertical detachment energies of the anions were calculated to facilitate their future experimental characterization. Bridging ld addressed in this work provides an interesting bonding mode for covalent and ionic-deficient systems, and may aid in designing new materials and catalysts with highly dispersed Au atoms.

  • 加载中
    1. [1]

      (1) PyykkI, P.; Desclaux, J. P. Accounts Chem. Res. 1979, 12, 276. doi: 10.1021/ar50140a002

    2. [2]

      (2) PyykkI, P. Chem. Rev. 1988, 88, 563. doi: 10.1021/cr00085a006

    3. [3]

      (3) Schwerdtfeger, P.; Dolg, M.; Schwarz,W. H. E.; Bowmaker, G. A.; Boyd, P. D.W. J. Chem. Phys. 1989, 91, 1762. doi: 10.1063/1.457082

    4. [4]

      (4) Schwerdtfeger, P. Chem. Phys. Lett. 1991, 183, 457. doi: 10.1016/0009-2614(91)90409-3

    5. [5]

      (5) (a) PyykkI, P. Angew. Chem. 2002, 114, 3723. doi: 10.1002/1521-3757(20021004)114:19<3723::AID-ANGE3723>3.0.CO;2-6

    6. [6]

      (b) PyykkI, P. Angew. Chem. Int. Edit. 2002, 41, 3573.

    7. [7]

      (6) (a) Schwarz, H. Angew. Chem. 2003, 115, 4580.

    8. [8]

      (b) Schwarz, H. Angew. Chem. Int. Edit. 2003, 42, 4442.

    9. [9]

      (7) Peer,W. J.; La wski, J. J. J. Am. Chem. Soc. 1978, 100, 6260. doi: 10.1021/ja00487a064

    10. [10]

      (8) (a) Mudring, A. V.; Jansen, M.; Daniels, J.; Kramer, S.; Mehring, M.; Ramalho, J. P. P.; Romero, A. H.; Parrinello, M. H. Angew. Chem. 2002, 114, 128.

    11. [11]

      (b) Mudring, A. V.; Jansen, M.; Daniels, J.; Kramer, S.; Mehring, M.; Ramalho, J. P. P.; Romero, A. H.; Parrinello, M. H. Angew. Chem. Int. Edit. 2002, 41, 120.

    12. [12]

      (9) Hall, K. P.; Min s, D. M. P. Prog. Inorg. Chem. 1984, 32, 237. doi: 10.1002/SERIES2229

    13. [13]

      (10) Lauher, J.W.;Wald, K. J. Am. Chem. Soc. 1981, 103, 7648. doi: 10.1021/ja00415a040

    14. [14]

      (11) Burdett, J. K.; Eisenstein, O.; Schweizer,W. B. Inorg. Chem. 1994, 33, 3261. doi: 10.1021/ic00093a012

    15. [15]

      (12) (a) Zhai, H. J.; Bürgel, C.; Bonacic-Koutecky, V.;Wang, L. S. J. Am. Chem. Soc. 2008, 130, 9156.

    16. [16]

      (b)Wang, X. B.;Wang, Y. L.; Yang, J.; Xing, X. P.; Li, J.; Wang, L. S. J. Am. Chem. Soc. 2009, 131, 16368. doi: 10.1021/a802408b

    17. [17]

      (13) Wang, L. S. Phys. Chem. Chem. Phys. 2010, 12, 8694. doi: 10.1039/c003886e

    18. [18]

      (14) (a) Kiran, B.; Li, X.; Zhai, H. J.; Cui, L. F.;Wang, L. S. Angew. Chem. Int. Edit. 2004, 43, 2125.

    19. [19]

      (b) Li, X.; Kiran, B.;Wang, L. S. J. Phys. Chem. A 2005, 109, 4366.

    20. [20]

      (c) Kiran, B.; Li, X.; Zhai, H. J.;Wang, L. S. J. Chem. Phys. 2006, 125, 133204.

    21. [21]

      (15) Zhai, H. J.;Wang, L. S.; Zubarev, D. Y.; Boldyrev, A. I. J. Phys. Chem. A 2006, 110, 1689. doi: 10.1021/jp0559074

    22. [22]

      (16) Zubarev, D. Y.; Boldyrev, A. I.; Li, J.; Zhai, H. J.;Wang, L. S. J. Phys. Chem. A 2007, 111, 1648.

    23. [23]

      (17) Zhai, H. J.; Miao, C. Q.; Li, S. D.;Wang, L. S. J. Phys. Chem. A 2010, 114, 12155. doi: 10.1021/jp108668t

    24. [24]

      (18) Li, D. Z.; Li, S. D. Int. J. Quantum Chem. 2011, 111, 4418. doi: 10.1002/qua.22993

    25. [25]

      (19) Yao,W. Z.; Li, D. Z.; Li, S. D. J. Comput. Chem. 2011, 32, 218. doi: 10.1002/jcc.v32.2

    26. [26]

      (20) Zubarev, D. Yu.; Li, J.;Wang, L. S.; Boldyrev, A. I. Inorg. Chem. 2006, 45, 5269. doi: 10.1021/ic060615i

    27. [27]

      (21) Chen, Q.; Zhai, H. J.; Li, S. D.;Wang, L. S. J. Chem. Phys. 2013, 138, 084306. doi: 10.1063/1.4792501

    28. [28]

      (22) Yao,W. Z.; Yao, J. B.; Li, X. B.; Li, S. D. Acta Phys. -Chim. Sin. 2013, 29, 1219. [姚文志, 姚建斌, 李新宝, 李思殿. 物理化学学报, 2013, 29, 1219.] doi: 10.3866/PKU.WHXB201303152

    29. [29]

      (23) Yao,W. Z.; Yao, J. B.; Li, S. D. Chin. J. Struct. Chem. 2012, 31, 1549.

    30. [30]

      (24) Yao,W. Z.; Liu, B. T.; Lu, Z. H.; Li, S. D. J. Phys. Chem. A 2013, 117, 5178. doi: 10.1021/jp4026656

    31. [31]

      (25) Mohr, R. R.; Lipscomb,W. N. Inorg. Chem. 1986, 25,1053. doi: 10.1021/ic00227a033

    32. [32]

      (26) Lammertsma, K.; Güner, O. F.; Drewes, R. M.; Reed, A. E.; Schleyer, P. V. R. Inorg. Chem. 1989, 28, 313. doi: 10.1021/ic00301a032

    33. [33]

      (27) Mains, G. J.; Bock, C.W.; Trachtman, M.; Finley, J.; McNamara, K.; Fisher, M.;Wociki, L. J. Phys. Chem. 1990, 94, 6996. doi: 10.1021/j100381a016

    34. [34]

      (28) (a) Zubarev, D. Y.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2008, 10, 5207. doi: 10.1039/b804083d

    35. [35]

      (b) Feng, G.; Huo, C. F.; Deng, C. M. J. Mol. Catal. A-Chem. 2009, 304, 58.

    36. [36]

      (c) Galeev, T. R.; Chen, Q.; Guo, J. C.; Bai, H.; Miao, C. Q.; Lu, H. G.; Sergeeva, A. P.; Li, D.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2011, 13, 11575

    37. [37]

      (29) (a) Silvi, B.; Savin, A. Nature 1994, 371, 683. doi: 10.1038/371683a0

    38. [38]

      (b) Becke, A.; Edgecombe, K. J. Chem. Phys. 1990, 92, 5397.

    39. [39]

      (30) Lu, H. G. In GXYZ Ver. 1.0, A Random Cartesian Coordinates Generating Program; Shanxi University: Taiyuan, 2008.

    40. [40]

      (31) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    41. [41]

      (b) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

    42. [42]

      (32) (a) Head- rdon, M. J.; Pople, A.; Frisch, M. J. Chem. Phys. Lett. 1988, 153, 503. doi: 10.1016/0009-2614(88)85250-3

    43. [43]

      (b) Frisch, M. J.; Head- rdon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275.

    44. [44]

      (33) (a) Cizek, J. Adv. Chem. Phys. 1969, 14, 35.

    45. [45]

      (b) Scuseria, G. E.; Schaefer, H. F. J. Chem. Phys. 1989, 90, 3700.

    46. [46]

      (c) Pople, J. A.; Head- rdon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.

    47. [47]

      (34) (a) Dolg, M.;Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866. doi: 10.1063/1.452288

    48. [48]

      (b) Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408.

    49. [49]

      (35) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796. doi: 10.1063/1.462569

    50. [50]

      (36) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.

    51. [51]

      (37) Lu, T.; Chen, F.W. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5

    52. [52]

      (38) Liu, J.; Aeschleman, J.; Rajan, L. M.; Che, C.; Ge, Q. in Materials Issues in a Hydrogen Economy; Jena, P., Kandalam, A., Sun, Q. Eds.;World Scientific Publishing Co. Ptc. Ltd.: Singapore, 2009; p 234.

    53. [53]

      (39) Lammertsma, K.; Ohwada, T. J. Am. Chem. Soc. 1996, 118, 7247. doi: 10.1021/ja960004x


  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    8. [8]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    13. [13]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    14. [14]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    17. [17]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    18. [18]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    19. [19]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(654)
  • Abstract views(680)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return