Citation: SUN Meng-Meng, CAO Yi, LAN Li, ZOU Sha, FANG Zhi-Tao, CHEN Yao-Qiang. Selective Catalytic Oxidation of Ammonia to Nitrogen over Iron and Copper Bimetallic Catalysts[J]. Acta Physico-Chimica Sinica, ;2014, 30(12): 2300-2306. doi: 10.3866/PKU.WHXB201409291
-
Iron and copper bimetallic catalysts with fixed total contents of copper and iron were prepared by a co-impregnation method, and then used for selective catalytic oxidation of ammonia to nitrogen. The properties of the catalysts were characterized by N2 adsorption-desorption, H2 temperature-programmed reduction (H2- TPR), NH3 temperature-programmed desorption (NH3-TPD), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The iron and copper bimetallic catalysts exhibited od activity and high selectivity of N2 at the gas hourly space velocity (GHSV) of 100000 h-1. The activity and N2 selectivity in the low temperature range increased with increasing Cu loading, whereas in the high temperature range (above 400 ℃) the selectivity of N2 was directly related to the content of iron. The highest NH3 conversion was achieved at about 350℃ for Fe0.25Cu0.75/ZSM-5, and the N2 selectivity was up to 97% at 300 ℃. On the other hand, the extremely high N2 selectivity about 98% was obtained over Fe0.75Cu0.25/ZSM-5 at 500 ℃. In addition, N2O as the by-product and greenhouse gas was obtained in very low amounts for all the catalysts. The characterization results showed that the activity was influenced by the acid content and the amounts of copper species. Moreover, the highly reducing capacity could improve the N2 selectivity.
-
Keywords:
-
Iron
, - Copper,
- Molecular sieve,
- Ammonia oxidation reaction,
- N2 selectivity,
- Catalyst
-
-
-
[1]
(1) Krupa, S. V. Environ. Pollut. 2003, 124, 179. doi: 10.1016/S0269-7491(02)00434-7
-
[2]
(2) Hung, C. M. Powder Technol. 2009, 196, 56. doi: 10.1016/j.powtec.2009.07.001
-
[3]
(3) Akah, A.; Cundy, C.; Garforth, A. Appl. Catal. B: Environ. 2005, 59, 221. doi: 10.1016/j.apcatb.2004.10.020
-
[4]
(4) Sobczyk, D. P.; Hensen, E. J. M.; Jong, A. M. D.; Santen, R. A. V. Top. Catal. 2003, 23, 1. doi: 10.1023/A:1024834800948
-
[5]
(5) Hung, C. M. Powder Technol. 2010, 200, 78. doi: 10.1016/j.powtec.2010.02.014
-
[6]
(6) Broek, A. C. M. V. D.; Grondelle, J. V.; Santen, R. A. V. J. Catal.1999, 185, 297. doi: 10.1006/jcat.1999.2506
-
[7]
(7) Gang, L.; Anderson, B. G.; Grondelle, J. V.; Santen, R. A. V. Appl. Catal. B: Environ. 2003, 40, 101. doi: 10.1016/S0926-3373(02)00129-7
-
[8]
(8) Zhang, L.; Zhang, C. B.; He, H. J. Catal. 2009, 261, 101. doi: 10.1016/j.jcat.2008.11.004
-
[9]
(9) Zhang, L.; He, H. J. Catal. 2009, 268, 18. doi: 10.1016/j.jcat.2009.08.011
-
[10]
(10) Long, R. Q.; Yang, R. T. J. Catal. 2002, 207, 158. doi: 10.1006/jcat.2002.3545
-
[11]
(11) Cui, X. Z.; Zhou, J.; Ye, Z. Q.; Chen, H. R.; Li, L.; Ruan, M. L.; Shi, J. L. J. Catal. 2010, 270, 310. doi: 10.1016/j.jcat.2010.01.005
-
[12]
(12) Qi, G. S.; Yang, R. T. Appl. Catal. A: Gen. 2005, 287, 25. doi: 10.1016/j.apcata.2005.03.006
-
[13]
(13) Qi, G. S.; Gatt, J. E.; Yang, R. T. J. Catal. 2004, 226, 120. doi: 10.1016/j.jcat.2004.05.023
-
[14]
(14) Long, R. Q.; Yang, R. T. J. Catal. 2001, 201, 145. doi: 10.1006/jcat.2001.3234
-
[15]
(15) Gang, L.; Grondelle, J. V.; Anderson, B. G.; Santen, R. A. V. J. Catal. 1999, 186, 100. doi: 10.1006/jcat.1999.2524
-
[16]
(16) Metkar, P. S.; Harold, M. P.; Balakotaiah, V. Appl. Catal. B: Environ. 2012, 111, 67.
-
[17]
(17) Song, S. Q.; Jiang, S. J. Appl. Catal. B: Environ. 2012, 117, 346.
-
[18]
(18) Liang, C. X.; Li, X. Y.; Qu, Z. P.; Tade, M.; Liu, S. M. Appl. Surf. Sci. 2012, 258, 3738. doi: 10.1016/j.apsusc.2011.12.017
-
[19]
(19) Shi, L.; Yu, T.;Wang, X. Q.;Wang, J.; Shen, M. Q. Acta Phys. -Chim. Sin. 2013, 29, 1550. [石琳, 于铁, 王欣全, 王军, 沈美庆. 物理化学学报, 2013, 29, 1550.] doi: 10.3866/PKU.WHXB201304283
-
[20]
(20) Rauscher, M.; Kesore, K.; Mönnig, R.; Schwieger,W.; Tißler, A.; Turek, T. Appl. Catal. A: Gen. 1999, 184, 249. doi: 10.1016/S0926-860X(99)00088-5
-
[21]
(21) Zhang, T.; Liu, J.;Wang, D. X.; Zhao, Z.;Wei, Y. C.; Cheng, K.; Jiang, G. Y.; Duan, A. J. Appl. Catal. B: Environ. 2014, 148, 520.
-
[22]
(22) Wang, J.; Huang, Y.; Yu, T.; Zhu, S. C.; Shen, M. Q.; Li,W.; Wang, J. Q. Catal. Sci. Technol. 2014, 4, 3004. doi: 10.1039/c4cy00451e
-
[23]
(23) Brüggemann, T. C.; Keil, F. J. J. Phys. Chem. C 2009, 113, 13860.
-
[24]
(24) Wagner, C. D.; Riggs,W. M.; Davis, L. E.; Moulder, J. F. Handbook of X-ray Photoelectron Spectroscopy, 1st ed.; Muilenberg, G. E. Ed. Perkin-Elmer Corporation: Eden Prairie, Minnesota, USA, 1979.
-
[25]
(25) Gurgul, J.; ??tka, K.; Hnat, I.; Rynkowski, J.; Dzwigaj, S. Microporous Mesoporous Mat. 2013, 168, 1. doi: 10.1016/j.micromeso.2012.09.015
-
[26]
(26) Lisi, L.; Pirone, R.; Russo, G.; Stanzione, V. Chem. Eng. J. 2009, 154, 341. doi: 10.1016/j.cej.2009.04.025
-
[27]
(27) Long, R. Q.; Yang, R. T. J. Catal. 2001, 198, 20. doi: 10.1006/jcat.2000.3118
-
[1]
-
-
[1]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[2]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[3]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[4]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[5]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[6]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[7]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[8]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[9]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[10]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[11]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[12]
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
-
[13]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[14]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[15]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[16]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[17]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[18]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[19]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[20]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[1]
Metrics
- PDF Downloads(424)
- Abstract views(611)
- HTML views(12)