Citation: HE Wen-Ying, YAO Xiao-Jun, HUA Ying-Jie, HUANG Guo-Lei, WU Xiu-Li, LI Xiao-Bao, HAN Chang-Ri, SONG Xiao-Ping. Effect of Kolavenic Acid on the Structure of Human Serum Albumin[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2142-2148. doi: 10.3866/PKU.WHXB201409253 shu

Effect of Kolavenic Acid on the Structure of Human Serum Albumin

  • Received Date: 1 July 2014
    Available Online: 25 September 2014

    Fund Project: 国家国际科技合作专项(2014DFA40850) (2014DFA40850)国家自然科学基金(81160391)资助项目 (81160391)

  • The effect of Kolavenic acid (KA), an active component isolated from the genus Polyalthia, on the structure of human serum albumin (HSA) was investigated by fluorescence polarization, synchronous fluorescence, three-dimensional (3D) fluorescence, and absorption spectroscopy in combination with molecular modeling techniques under physiological conditions. The synchronous and absorption fluorescence spectra confirmed that KA has an effect on the microenvironment around HSA in aqueous solution. The two-dimensional (2D) and 3D fluorescence spectra showed that KA could quench the intrinsic fluorescence of HSA and make its conformation change. Fluorescence polarization measurements provided useful information on the relaxation time and aggregation behavior of the complex formed between HSA and KA, and indicated that the presence of KA caused changes in the fluidity and microviscosity of HSA. The binding constants and thermodynamic parameters for KA-HSA systems were obtained under different temperatures (298, 308, and 318 K). Molecular docking showed that the KAmoiety bound to the hydrophobic cavity of HSA, and there were three hydrogenbonding interactions between KAand the Lys195 andAsp451 residues. Fluorescent displacement measurements confirmed that KA bound to HSA at site Ⅱ. In addition, the binding mechanism of KA and HSA was revealed by the physicochemical parameters at the molecular level. The results showed that the interaction between KA and HSA was strong, indicating that KA may be stored and transferred by serum albumin.

  • 加载中
    1. [1]

      (1) Li, X. B. Studies on Chemical Constituents and Pharmacogical Activities of the Roots of Polyalthia laui. Master Dissertation, Hainan Normal University, Haikou, 2012. [李小宝. 海南暗罗根化学成分及其药理活性研究[M]. 海口: 海南师范大学, 2012.]

    2. [2]

      (2) http://www.med126.com/pharm/2010/20100123233057_164906.shtml, 2010 (accessed July 1, 2014).

    3. [3]

      (3) Liu, Y.; Long, M.; Xie, M. X. Acta Phys. -Chim. Sin. 2013, 29, 2647. [刘媛, 龙梅, 谢孟峡. 物理化学学报, 2013, 29, 2647.] doi: 10.3866/PKU.WHXB201310311

    4. [4]

      (4) Ning, A. M.; Meng, L.; Zhao, Z. L.; Zheng, X. F.;Wan, X. S. Acta Phys. -Chim. Sin. 2013, 29, 2639. [宁爱民, 孟磊, 赵仲麟, 郑先福, 宛新生. 物理化学学报, 2013, 29, 2639.] doi: 10.3866/PKU.WHXB201310281

    5. [5]

      (5) wda, J. I.; Nandibewoor, S. T. Spectrochimica Acta Part A 2014, 124, 397. doi: 10.1016/j.saa.2014.01.028

    6. [6]

      (6) Tunc, S.; Duman, O.; Soylu, I.; Bozo?lan, B. J. Lumin. 2014, 151, 22. doi: 10.1016/j.jlumin.2014.02.004

    7. [7]

      (7) Tao,W. S.; Li,W.; Jiang, Y. M. The Basic of Protein Molecules, 2nd ed.; Higher Education Press: Beijing, 1995; pp 350-355. [陶慰孙, 李惟, 姜涌明. 蛋白质分子基础. 第二版. 北京: 高等教育出版社, 1995: 350-355.]

    8. [8]

      (8) Yang, P.; Gao, F. Principles of Bioinorganic Chemistry; Science Press: Beijing, 2002; pp 322-342. [杨频, 高飞. 生物无机化学原理. 北京: 科学出版社, 2002: 322-342.]

    9. [9]

      (9) Zhu, B.; Du, X. L.; Li, R. C.;Wang, K.; Jin, J.;Wang, B. C. Chem. J. Chin. Univ. 2001, 22, 26. [朱兵, 杜秀莲, 李荣昌, 王夔, 金坚, 王博诚. 高等学校化学学报, 2001, 22, 26.]

    10. [10]

      (10) Liu, G. Q.; Yue, H. Q.; Zhang, Y. Mod. Instruments Med. Treat. 2004, 6, 33. [刘桂琴, 岳慧琴, 张勇. 现代仪器与医疗, 2004, 6, 33.]

    11. [11]

      (11) Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum: New York, 1983; pp 341-379.

    12. [12]

      (12) SYBYL Software, Version 6.9; Tripos Associates Inc.: St. Louis, MO, USA, 2002.

    13. [13]

      (13) Morris, G. M.; odsell, D. S.; Huey, R.; Olson, A. J. J. Comput-Aided. Mol. Des. 1996, 10, 293. doi: 10.1007/BF00124499

    14. [14]

      (14) Morris, G. M.; odsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19, 1639.

    15. [15]

      (15) Carter, D. C.; He, X. M.; Munson, S. H.; Twigg, P. D.; Gernert, K. M.; Broom, M. B.; Miller, T. Y. Science 1989, 244, 1195. doi: 10.1126/science.2727704

    16. [16]

      (16) Wolfbeis, O. S.; Leiner, M.; Hochmuth, P.; Geiger, H.; Bunsenges, B. Bunsenges. Phys. Chem. 1984, 88, 759. doi: 10.1002/bbpc.19840880817

    17. [17]

      (17) Valeur, B. Molecular Fluorescence: Principles and Applications;Wiley-VCH Verlag GmbH. ISBNs: 3-527-29919-X (Hardcover); 3-527-60024-8 (Electronic). 2001; pp 56-68.

    18. [18]

      (18) Ross, P. D.; Subramanian, S. Biochemistry 1981, 20, 3096. doi: 10.1021/bi00514a017

    19. [19]

      (19) Hill, J. J.; Royer, C. A. Methods in Enzymology; Academic Press: San Die , 1997; pp 390-416.

    20. [20]

      (20) Kido, C.; Murano, S.; Tsuruoka, M. Gene 2000, 259, 123. doi: 10.1016/S0378-1119(00)00457-1

    21. [21]

      (21) Yang, Y.; Ye, X. L.; Li, X. G. Negative 2009, 17, 1627. [杨勇, 叶小利, 李学刚. 医学争鸣, 2009, 17, 1627.](22) Sudlow, G.; Birkett, D. J.;Wade, D. N. Mol. Pharmacol. 1976, 12, 1052.(23) Khan, A. M.; Muzammil, S.; Musarrat, J. Int. J. Biol. Macromol. 2002, 30, 243. doi: 10.1016/S0141-8130(02)00038-7

    22. [22]

      (24) Mohammed, H. R.; Toru, M.; Tomoko, O.; Keishi, Y.; Masaki, O. Biochem. Pharm. 1993, 46, 1721. doi: 10.1016/0006-2952(93)90576-I

    23. [23]

      (25) Wuhan University. Analytical Chemistry; People Press: Beijing, 1978; pp 131-132. [武汉大学. 分析化学. 北京: 人民出版社, 1978: 131-132.]

    24. [24]

      (26) Gao, H.; Lei, L. D.; Liu, J. Q.; Kong, Q.; Chen, X. G.; Hu, Z. D. J. Photochem. Photobiol. A 2004, 167, 213. doi: 10.1016/j.jphotochem.2004.05.017


  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    7. [7]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    8. [8]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    9. [9]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    10. [10]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    11. [11]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    12. [12]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    13. [13]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    14. [14]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    15. [15]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    16. [16]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(337)
  • Abstract views(717)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return