Citation: LIU Hong-Yan, FANG Chun-Hui, FANG Yan, ZHOU Yong-Quan, ZHU Fa-Yan, GE Hai-Wen, YANG Zi-Xiang, TANG Yu-Ling. EXAFS Study of the Structure of Amorphous Nickel Borate[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 1979-1986. doi: 10.3866/PKU.WHXB201409251 shu

EXAFS Study of the Structure of Amorphous Nickel Borate

  • Received Date: 6 August 2014
    Available Online: 25 September 2014

    Fund Project: 国家自然科学基金项目(21373251) (21373251)中国科学院知识创新工程重要方向项目(KZCX2-EW-307)资助 (KZCX2-EW-307)

  • In this work, two amorphous hydrated nickel borates were synthesized with nickel chloride hexahydrate and borax as reactants at mole ratios of 1:2 and 1:8, respectively. The chemical compositions of these nickel borates were determined to be NiO·0.8B2O3·4.5H2O and NiO·B2O3·3H2O through thermogravimetryderivative thermogravimetry (TG-DTG) and chemical analysis, in which the main anions were determined to be B3O3(OH)52- and B2O(OH)62-, respectively, by Raman spectroscopy. The local structure of these samples was studied by synchrotron radiation extended X-ray absorption fine structure (EXAFS). Based on the processing and fitting of the EXAFS experimental data, the neighboring coordination atoms type, the interatomic distances, and the atom-pair numbers of Ni were determined. The fitting results of the amorphous nickel borate show that the local structure around the Ni atom has a similar structure to that of the Ni3B2O6 crystal. The neighboring coordination atoms of Ni in these amorphous nickel borates are O, B, and Ni. For NiO·0.8B2O3·4.5H2O, the interatomic distances for Ni―O, Ni―B, and Ni―Ni are 0.208, 0.263, and 0.311 nm, and the atom-pair numbers are 5.7, 3.8, and 3.8, respectively. The interatomic distances of NiO·B2O3·3H2O are 0.207, 0.262, and 0.310 nm, and the atom-pair numbers are 6.0, 4.0, and 4.0, respectively. The first shells of Ni2+ in NiO·0.8B2O3·4.5H2O and NiO·B2O3·3H2O are octahedral with six oxygen atoms.

  • 加载中
    1. [1]

      (1) Dinca, M.; Surendranath, Y.; Nocera, D. G. Proc. Natl. Acad. Sci . U. S. A. 2010, 107, 10337. doi: 10.1073/pnas.1001859107

    2. [2]

      (2) Chen, X.; Xue, H. P.; Chang, X. N.; Zhang, L.; Zhao, Y. H.; Zuo, J. L.; Zang, H. G.; Xiao,W. Q. J. Alloy. Compd. 2006, 425, 96. doi: 10.1016/j.jallcom.2006.01.068

    3. [3]

      (3) Zhang, Y.; Liang, J. K.; Chen, X. L.; He, M.; Xu, T. J. Alloy. Compd. 2001, 327, 96. doi: 10.1016/S0925-8388(01)01405-0

    4. [4]

      (4) Keszler, D. A. Curr. Opin. Solid State Mater. Sci. 1999, 4, 155. doi: 10.1016/S1359-0286(99)00011-X

    5. [5]

      (5) Giese, R. F., Jr. Science 1966, 154, 1453. doi: 10.1126/science.154.3755.1453

    6. [6]

      (6) Ma, R. Z.; Bando, Y.; Sato, T.; lberg, D.; Zhu, H. G.; Xu, C. L.;Wu, D. H. Appl. Phys. Lett. 2002, 81, 3467. doi: 10.1063/1.1517178

    7. [7]

      (7) Debart, A.; Revel, B.; Dupont, L.; Montagne, L.; Leriche, J. B.; Touboul, M.; Tarascon, J. M. Chem. Mater. 2003, 15, 3683. doi: 10.1021/cm030057v

    8. [8]

      (8) Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J. Yachandra, V. K.; Nocera, D. G. J. Am. Chem. Soc. 2012, 134, 6801. doi: 10.1021/ja301018q

    9. [9]

      (9) Bediako, D. K.; Surendranath, Y.; Nocera, D. G. J. Am. Chem. Soc. 2013, 135, 3662. doi: 10.1021/ja3126432

    10. [10]

      (10) Nocera, D. G. Inorg. Chem. 2009, 48, 10001. doi: 10.1021/ic901328v

    11. [11]

      (11) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci . U. S. A. 2006, 103,15729. doi: 10.1073/pnas.0603395103

    12. [12]

      (12) Menaka, S. E.; Sharma, S.; Ramanujachary, K. V.; Lofland, S. E.; Ganguli, A. K. J. Colloid Interface Sci. 2011, 360, 393. doi: 10.1016/j.jcis.2011.04.100

    13. [13]

      (13) Pang, H.; Lu, Q. Y.; Chen, C. Y.; Liu, X. R.; Gao, F. J. Mater. Chem. 2011, 21, 13889. doi: 10.1039/c1jm10923e

    14. [14]

      (14) Menaka, S. E.; Lofland, S. E.; Ramanujachary, K. V.; Ganguli, A. K. J. Organomet. Chem. 2010, 695, 1002. doi: 10.1016/j.jorganchem.2009.10.023

    15. [15]

      (15) Liu, X. F.; Zhu,W. C.; Cui, X. L.; Liu, T.; Zhang, Q. Powder Technol. 2012, 222, 160. doi: 10.1016/j.powtec.2012.02.026

    16. [16]

      (16) Götz,W. Naturwissenschaften 1963, 50, 567.

    17. [17]

      (17) Wu, M. Y.;Wang, J. M.; Zhang, J. Q.; Cao, C. N. Acta Phys. -Chim. Sin. 2005, 21, 523. [吴梅银, 王建明, 张鉴清, 曹楚南. 物理化学学报, 2005, 21, 523.] doi: 10.3866/PKU.WHXB20050513

    18. [18]

      (18) Ren, J. X.; Zhou, Z.; Yan, J. Acta phys. -Chim. Sin. 2007, 23, 738. [任俊霞, 周震, 阎杰. 物理化学学报, 2007, 23, 738.] doi: 10.3866/PKU.WHXB20070522

    19. [19]

      (19) Qinghai Institute of Salt Lakes, Chinese Academy of Sciences. Analysis of Salt and Brine; Science Press: Beijing, 1988; pp 47-55. [中国科学院青海盐湖研究所. 卤水和盐的分析方法. 北京: 科学出版社, 1988: 47-55.]

    20. [20]

      (20) Teo, B. K. EXAFS: Basic Principles and Data Analysis; Springer-Verlag: New York, 1986; pp 34-78.

    21. [21]

      (21) Koningsberger, D. C.; Prins, R. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES ; Wiley-Interscience: New York, 1988; pp 42-88.

    22. [22]

      (22) Newville, M.; Ravel, R.; Haskel, D.; Rehr, J. J.; Stern, E. A.; Yacoby, Y. Phys. B: Condensed Matter 1995, 208&209, 154.

    23. [23]

      (23) Newville, M.; Livins, P.; Yacoby, Y.; Rehr, J. J.; Stern, E. A. Phys. Rev. B 1993, 47, 14126. doi: 10.1103/PhysRevB.47.14126

    24. [24]

      (24) Wang, Q.W.; Liu,W. H. X-ray Absorption Fine Structure and Application; Science Press: Beijing, 1994; pp 14-52. [王其武, 刘文汉. X 射线吸收精细结构及其应用. 北京: 科学出版社, 1994: 14-52.]

    25. [25]

      (25) Stern, E. A. Phys. Rev. B 1993, 48, 9825. doi: 10.1103/PhysRevB.48.9825

    26. [26]

      (26) Xing,W.; Li, F.; Yan, Z. F.; Lu, G. Q. J. Power Sources 2004, 134, 324. doi: 10.1016/j.jpowsour.2004.03.038

    27. [27]

      (27) Wang, C. C.; Li, J. H.; Sun, Y. F.; Zhu, X. Q.; Huang, C. J.; Weng,W. Z.;Wan, H. L. Acta Phys. -Chim. Sin. 2011, 27, 2421. [汪彩彩, 李建辉, 孙毅飞, 朱晓权, 黄传敬, 翁维正, 万惠霖. 物理化学学报, 2011, 27, 2421.] doi: 10.3866/PKU.WHXB20110932

    28. [28]

      (28) Yan, J.; Sun,W.; Zhang, Q.; Fan, Z. J.;Wei, F. J. Mater. Chem. 2012, 22, 11494. doi: 10.1039/c2jm30221g

    29. [29]

      (29) Fu, G. R.; Hu, Z. A.; Xie, L. J.; Jin, X. Q.; Xie, Y. L.;Wang, Y. X.; Zhang, Z. Y.; Yang, Y. Y.;Wu, H. Y. Int. J. Electrochem. Sci. 2009, 4, 1052.

    30. [30]

      (30) Ni, X. M.; Zhao, Q. B.; Li, B. B.; Cheng, J.; Zheng, H. G. Solid State Commun. 2006, 137, 585. doi: 10.1016/j.ssc.2006.01.033

    31. [31]

      (31) Liu, Z. H.; Gao, B.; Li, S. N.; Hu, M. C.; Xia, S. P. Spectrochim. Acta A 2004, 60, 3125. doi: 10.1016/j.saa.2004.02.027

    32. [32]

      (32) Jia, Y. Z.; Gao, S. Y.; Xia, S. P.; Li, J. Spectrochim. Acta A 2000, 56, 1291. doi: 10.1016/S1386-1425(99)00227-9

    33. [33]

      (33) Yamauchi, S.; Doi, S. J. Wood Sci. 2003, 49, 227. doi: 10.1007/s10086-002-0466-x

    34. [34]

      (34) Zhou, Y. Q.; Fang, C. H.; Fang, Y.; Zhu, F. Y. Spectrochim. Acta A 2011, 83, 82. doi: 10.1016/j.saa.2011.07.081

    35. [35]

      (35) Zhu, F. Y.; Fang, C. H.; Fang, Y.; Zhou, Y. Q.; Xu, S.; Tao, S.; Cao, L. D. Acta Chim. Sin. 2012, 70, 445. [朱发岩, 房春晖, 房艳, 周永全, 许沙, 陶松, 曹领帝. 化学学报, 2012, 70, 445.] doi: 10.6023/A1105313

    36. [36]

      (36) Frost, R. L.; Xi, Y. F. Spectrochim. Acta A 2012, 96, 89. doi: 10.1016/j.saa.2012.04.087

    37. [37]

      (37) Rajamathi, M.; Kamath, P. V.; Seshadri, R. J. Mater. Chem. 2000, 10, 503. doi: 10.1039/a905651c

    38. [38]

      (38) Kostecki, R.; Mclarnon, F. J. Electrochem. Soc. 1997, 144, 485. doi: 10.1149/1.1837437

    39. [39]

      (39) McEwen, R. S. J. Phys. Chem. 1971, 75, 1782. doi: 10.1021/j100681a004

    40. [40]

      (40) Wells, A. F. Srrucrural Inorganic Chemistry; Oxford University Press: London, 1975; pp 257-259.


  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    9. [9]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    13. [13]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    14. [14]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    15. [15]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    16. [16]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(581)
  • Abstract views(564)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return