Citation: WU Xuan-Jun, ZHAO Peng, FANG Ji-Min, WANG Jie, LIU Bao-Shun, CAI Wei-Quan. Simulation on the Hydrogen Storage Properties of New Doping Porous Aromatic Frameworks[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2043-2054. doi: 10.3866/PKU.WHXB201409222 shu

Simulation on the Hydrogen Storage Properties of New Doping Porous Aromatic Frameworks

  • Received Date: 31 July 2014
    Available Online: 22 September 2014

    Fund Project: 湖北省自然科学基金(2013CFB344) (2013CFB344) 国家自然科学基金(51272201) (51272201) 教育部新世纪优秀人才支持计划(NCET-13-0942) (NCET-13-0942)武汉理工大学中央高校基本科研业务费专项资金(2013-II-014, 201410497039)资助项目 (2013-II-014, 201410497039)

  • Several new porous aromatic frameworks (PAFs) were designed by Li doping or B substitution based on the PAF-301 molecular model. The hydrogen storage capacities of these materials were investigated using quantum mechanics and molecular mechanics methods. First, the binding energies between H2 and the different molecular fragments were calculated using quantum mechanics, and the atomic charge distributions of the molecular fragments were calculated by the density-derived electrostatic and chemical charge (DDEC) method. Then, the adsorption equilibrium properties of H2 on the different PAFs were calculated at 77 and 298 K using grand canonical Monte Carlo (GCMC) simulations. The results indicate that the binding energy between H2 and benzene without Li doping is poor, while the binding energies between H2 and Li-doped six-member rings are improved. Li atoms doped into the benzene ring result in higher positive charges, and the electronegativity of the original carbon atoms in the benzene ring increase after its two carbon atoms are replaced with two boron atoms. Among these new materials, PAF-301Li has the highest hydrogen storage capacity at 77 K, while PAF-C4B2H4-Li2-Si and PAF-C4B2H4-Li2-Ge have better hydrogen storage capacities at room temperature than at 77 K. However, the hydrogen storage capacities of these various materials at room temperature are far below the capacities at cryogenic temperature. The preferential adsorption sites for H2 on the PAFs at 77 K were analyzed through the potential energy surfaces and mass center density distribution of the adsorption equilibrium. It was found that there are four obvious high-density adsorption regions in the frameworks of PAF-301 and PAF-301Li because of their wide low-energy regions in the crystal center, while there are only two distinct high-density adsorption regions in the other three PAFs because of their narrow low-energy regions in the unit cell center.

  • 加载中
    1. [1]

      (1) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341 (6149), 974.

    2. [2]

      (2) Han, S. S.; Jung, D. H.; Choi, S. H.; Heo, J. ChemPhysChem 2013, 14 (12), 2698. doi: 10.1002/cphc.v14.12

    3. [3]

      (3) Guo, J. H.; Zhang, H.; Miyamoto, Y. Phys. Chem. Chem. Phys. 2013, 15 (21), 8199. doi: 10.1039/c3cp50492a

    4. [4]

      (4) Yang, Q.; Liu, D.; Zhong, C.; Li, J. R. Chem. Rev. 2013, 113 (10), 8261. doi: 10.1021/cr400005f

    5. [5]

      (5) Pathak, B.; Pradhan, K.; Hussain, T.; Ahuja, R.; Jena, P. ChemPhysChem 2012, 13 (1), 300. doi: 10.1002/cphc.201100585

    6. [6]

      (6) Varin, R. A.; Zbroniec, L. J. Alloy. Compd. 2010, 506 (2), 928. doi: 10.1016/j.jallcom.2010.07.119

    7. [7]

      (7) Xu, J.; Qi, Z.; Cao, J.; Meng, R.; Gu, X.;Wang,W.; Chen, Z. Dalton Trans. 2013, 42 (36), 12926. doi: 10.1039/c3dt50933h

    8. [8]

      (8) Tranchemontagne, D. J.; Park, K. S.; Furukawa, H.; Eckert, J.; Knobler, C. B.; Yaghi, O. M. J. Phys. Chem. C 2012, 116 (24), 13143. doi: 10.1021/jp302356q

    9. [9]

      (9) Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112 (2), 673. doi: 10.1021/cr300014x

    10. [10]

      (10) Mendoza-Cortes, J. L.; ddard,W. A., III; Furukawa, H.; Yaghi, O. M. J. Phys. Chem. Lett. 2012, 3 (18), 2671. doi: 10.1021/jz301000m

    11. [11]

      (11) Yang, Z.; Cao, D. J. Phys. Chem. C 2012, 116 (23), 12591. doi: 10.1021/jp302175d

    12. [12]

      (12) Ben, T.; Qiu, S. CrystEngComm 2013, 15 (1), 17. doi: 10.1039/c2ce25409c

    13. [13]

      (13) Miao, Y. L.; Sun, H.;Wang, L.; Sun, Y. X. Acta Phys. -Chim. Sin. 2012, 28 (3), 547. [苗延霖, 孙淮, 王琳, 孙迎新. 物理化学学报, 2012, 28 (3), 547.] doi: 10.3866/PKU.WHXB201112301

    14. [14]

      (14) Hussain, T.; De Sarkar, A.; Ahuja, R. Int. J. Hydrog. Energy 2014, 39 (6), 2560. doi: 10.1016/j.ijhydene.2013.11.083

    15. [15]

      (15) palsamy, K.; Subramanian, V. Int. J. Hydrog. Energy 2014, 39 (6), 2549. doi: 10.1016/j.ijhydene.2013.11.075

    16. [16]

      (16) Lan, J.; Cao, D.;Wang,W.; Ben, T.; Zhu, G. J. Phys. Chem. Lett. 2010, 1 (6), 978. doi: 10.1021/jz900475b

    17. [17]

      (17) Ren, H.; Ben, T.; Sun, F.; Guo, M.; Jing, X.; Ma, H.; Cai, K.; Qiu, S.; Zhu, G. J. Mater. Chem. 2011, 21 (28), 10348. doi: 10.1039/c1jm11307k

    18. [18]

      (18) Wang, Z. Y.; Li, G.; Sun, Z. G. Acta Phys. -Chim. Sin. 2013, 29 (11), 2422. [王朝阳, 李钢, 孙志国. 物理化学学报, 2013, 29 (11), 2422.] doi: 10.3866/PKU.WHXB201309021

    19. [19]

      (19) Xiang, Z.; Cao, D.;Wang,W.; Yang,W.; Han, B.; Lu, J. J. Phys. Chem. C 2012, 116 (9), 5974. doi: 10.1021/jp300137e

    20. [20]

      (20) Lan, J.; Cao, D.;Wang,W.; Smit, B. ACS Nano 2010, 4 (7), 4225. doi: 10.1021/nn100962r

    21. [21]

      (21) Sun, Y.; Ben, T.;Wang, L.; Qiu, S.; Sun, H. J. Phys. Chem. Lett. 2010, 1 (19), 2753. doi: 10.1021/jz100894u

    22. [22]

      (22) Babarao, R.; Dai, S.; Jiang, D. E. Langmuir 2011, 27 (7), 3451. doi: 10.1021/la104827p

    23. [23]

      (23) Ahmed, A.; Thornton, A.W.; Konstas, K.; Kannam, S. K.; Babarao, R.; Todd, B. D.; Hill, A. J.; Hill, M. R. Langmuir 2013, 29 (50), 15689. doi: 10.1021/la403864u

    24. [24]

      (24) Srinivasu, K.; Ghosh, S. K. J. Phys. Chem. C 2011, 115 (34), 16984. doi: 10.1021/jp2035218

    25. [25]

      (25) Wang,W.; Yan, Z. J.; Yuan, Y.; Sun, F. X.; Zhao, M.; Ren, H.; Zhu, G. S. Acta Chim. Sin. 2014, 72 (5), 557. [王维, 闫卓君, 元野, 孙福兴, 赵明, 任浩, 朱广山. 化学学报, 2014, 72 (5), 557.]

    26. [26]

      (26) Yuan, Y.; Yan, Z. X.; Ren, H.; Liu, Q. Y.; Zhu, G. S.; Sun, F. X. Acta Chim. Sin. 2012, 70 (13), 1446. [元野, 闫卓君, 任浩, 刘青英, 朱广山, 孙福兴. 化学学报, 2012, 70 (13), 1446.] doi: 10.6023/A12040104

    27. [27]

      (27) Manz, T. A.; Sholl, D. S. J. Chem. Theory Comput. 2010, 6 (8), 2455. doi: 10.1021/ct100125x

    28. [28]

      (28) Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.;Wang,W.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Angew. Chem. Int. Edit. 2009, 48 (50), 9457. doi: 10.1002/anie.200904637

    29. [29]

      (29) Frost, H.; Snurr, R. Q. J. Phys. Chem. C 2007, 111 (50), 18794. doi: 10.1021/jp076657p

    30. [30]

      (30) Wu, X. J.; Yang, X.; Song, J.; Cai,W. Q. Acta Chim. Sin. 2012, 70 (24), 2518. [吴选军, 杨旭, 宋杰, 蔡卫权. 化学学报, 2012, 70 (24), 2518.] doi: 10.6023/A12110858

    31. [31]

      (31) Wu, X. J.; Zheng, J.; Li, J.; Cai,W. Q. Acta Phys. -Chim. Sin. 2013, 29 (10), 2207. [吴选军, 郑佶, 李江, 蔡卫权. 物理化学学报, 2013, 29 (10), 2207.] doi: 10.3866/PKU.WHXB201307191

    32. [32]

      (32) Wilmer, C. E.; Farha, O. K.; Bae, Y. S.; Hupp, J. T.; Snurr, R. Q. Energy & Environmental Science 2012, 5 (12), 9849. doi: 10.1039/c2ee23201d

    33. [33]

      (33) Wilmer, C. E.; Snurr, R. Q. Chem. Eng. J. 2011, 171 (3), 775. doi: 10.1016/j.cej.2010.10.035

    34. [34]

      (34) Wu, D.;Wang, C.; Liu, B.; Liu, D.; Yang, Q.; Zhong, C. AIChE J. 2012, 58 (7), 2078. doi: 10.1002/aic.v58.7

    35. [35]

      (35) Schmidt, M.W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; rdon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.;Windus, T. L.; Dupuis, M.; Mont mery, J. A. J. Comput. Chem. 1993, 14, 1347.

    36. [36]

      (36) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. doi: 10.1080/00268977000101561

    37. [37]

      (37) Kresse, G.; Furthmuller, J. Comput. Mat. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0

    38. [38]

      (38) Chempath, S.; Clark, L. A.; Snurr, R. Q. J. Chem. Phys. 2003, 118 (16), 7635. doi: 10.1063/1.1562607

    39. [39]

      (39) Buch, V. J. Chem. Phys. 1994, 100, 7610. doi: 10.1063/1.466854

    40. [40]

      (40) Wu, X.; Huang, J.; Cai,W.; Jaroniec, M. RSC Adv. 2014, 4 (32), 16503. doi: 10.1039/c4ra00664j

    41. [41]

      (41) Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fund. 1976, 15, 59. doi: 10.1021/i160057a011

    42. [42]

      (42) Duren, T.; Sarkisov, L.; Yaghi, O. M.; Snurr, R. Q. Langmuir 2004, 20 (7), 2683. doi: 10.1021/la0355500

    43. [43]

      (43) Li, H.; Eddaoudi, M.; Keeffe, M. O.; Yaghi, O. M. Nature 1999, 402, 276. doi: 10.1038/46248

    44. [44]

      (44) Koh, K.;Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2009, 131 (12), 4184. doi: 10.1021/ja809985t

    45. [45]

      (45) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. Scince 2005, 309 (5743), 2040. doi: 10.1126/science.1116275

    46. [46]

      (46) Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128 (11), 3494. doi: 10.1021/ja058213h

    47. [47]

      (47) Yuan, D.; Lu,W.; Zhao, D.; Zhou, H. C. Adv. Mater. 2011, 23 (32), 3723. doi: 10.1002/adma.v23.32

    48. [48]

      (48) Farha, O. K.; Yazaydin, A. O.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. Nat. Chem. 2010, 2 (11), 944. doi: 10.1038/nchem.834

    49. [49]

      (49) Yuan, D.; Zhao, D.; Sun, D.; Zhou, H. C. Angew. Chem. Int. Edit. 2010, 49, 5357. doi: 10.1002/anie.v49:31

    50. [50]

      (50) Furukawa, H.; Ko, N.; , Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M. Science 2010, 329 (5990), 424. doi: 10.1126/science.1192160

    51. [51]

      (51) Kokalj, A. Comp. Mater. Sci. 2003, 28, 155. doi: 10.1016/S0927-0256(03)00104-6


  • 加载中
    1. [1]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    6. [6]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

Metrics
  • PDF Downloads(480)
  • Abstract views(891)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return