Citation:
WU Xuan-Jun, ZHAO Peng, FANG Ji-Min, WANG Jie, LIU Bao-Shun, CAI Wei-Quan. Simulation on the Hydrogen Storage Properties of New Doping Porous Aromatic Frameworks[J]. Acta Physico-Chimica Sinica,
;2014, 30(11): 2043-2054.
doi:
10.3866/PKU.WHXB201409222
-
Several new porous aromatic frameworks (PAFs) were designed by Li doping or B substitution based on the PAF-301 molecular model. The hydrogen storage capacities of these materials were investigated using quantum mechanics and molecular mechanics methods. First, the binding energies between H2 and the different molecular fragments were calculated using quantum mechanics, and the atomic charge distributions of the molecular fragments were calculated by the density-derived electrostatic and chemical charge (DDEC) method. Then, the adsorption equilibrium properties of H2 on the different PAFs were calculated at 77 and 298 K using grand canonical Monte Carlo (GCMC) simulations. The results indicate that the binding energy between H2 and benzene without Li doping is poor, while the binding energies between H2 and Li-doped six-member rings are improved. Li atoms doped into the benzene ring result in higher positive charges, and the electronegativity of the original carbon atoms in the benzene ring increase after its two carbon atoms are replaced with two boron atoms. Among these new materials, PAF-301Li has the highest hydrogen storage capacity at 77 K, while PAF-C4B2H4-Li2-Si and PAF-C4B2H4-Li2-Ge have better hydrogen storage capacities at room temperature than at 77 K. However, the hydrogen storage capacities of these various materials at room temperature are far below the capacities at cryogenic temperature. The preferential adsorption sites for H2 on the PAFs at 77 K were analyzed through the potential energy surfaces and mass center density distribution of the adsorption equilibrium. It was found that there are four obvious high-density adsorption regions in the frameworks of PAF-301 and PAF-301Li because of their wide low-energy regions in the crystal center, while there are only two distinct high-density adsorption regions in the other three PAFs because of their narrow low-energy regions in the unit cell center.
-
-
-
[1]
(1) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341 (6149), 974.
-
[2]
(2) Han, S. S.; Jung, D. H.; Choi, S. H.; Heo, J. ChemPhysChem 2013, 14 (12), 2698. doi: 10.1002/cphc.v14.12
-
[3]
(3) Guo, J. H.; Zhang, H.; Miyamoto, Y. Phys. Chem. Chem. Phys. 2013, 15 (21), 8199. doi: 10.1039/c3cp50492a
-
[4]
(4) Yang, Q.; Liu, D.; Zhong, C.; Li, J. R. Chem. Rev. 2013, 113 (10), 8261. doi: 10.1021/cr400005f
-
[5]
(5) Pathak, B.; Pradhan, K.; Hussain, T.; Ahuja, R.; Jena, P. ChemPhysChem 2012, 13 (1), 300. doi: 10.1002/cphc.201100585
-
[6]
(6) Varin, R. A.; Zbroniec, L. J. Alloy. Compd. 2010, 506 (2), 928. doi: 10.1016/j.jallcom.2010.07.119
-
[7]
(7) Xu, J.; Qi, Z.; Cao, J.; Meng, R.; Gu, X.;Wang,W.; Chen, Z. Dalton Trans. 2013, 42 (36), 12926. doi: 10.1039/c3dt50933h
-
[8]
(8) Tranchemontagne, D. J.; Park, K. S.; Furukawa, H.; Eckert, J.; Knobler, C. B.; Yaghi, O. M. J. Phys. Chem. C 2012, 116 (24), 13143. doi: 10.1021/jp302356q
-
[9]
(9) Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112 (2), 673. doi: 10.1021/cr300014x
-
[10]
(10) Mendoza-Cortes, J. L.; ddard,W. A., III; Furukawa, H.; Yaghi, O. M. J. Phys. Chem. Lett. 2012, 3 (18), 2671. doi: 10.1021/jz301000m
-
[11]
(11) Yang, Z.; Cao, D. J. Phys. Chem. C 2012, 116 (23), 12591. doi: 10.1021/jp302175d
-
[12]
(12) Ben, T.; Qiu, S. CrystEngComm 2013, 15 (1), 17. doi: 10.1039/c2ce25409c
-
[13]
(13) Miao, Y. L.; Sun, H.;Wang, L.; Sun, Y. X. Acta Phys. -Chim. Sin. 2012, 28 (3), 547. [苗延霖, 孙淮, 王琳, 孙迎新. 物理化学学报, 2012, 28 (3), 547.] doi: 10.3866/PKU.WHXB201112301
-
[14]
(14) Hussain, T.; De Sarkar, A.; Ahuja, R. Int. J. Hydrog. Energy 2014, 39 (6), 2560. doi: 10.1016/j.ijhydene.2013.11.083
-
[15]
(15) palsamy, K.; Subramanian, V. Int. J. Hydrog. Energy 2014, 39 (6), 2549. doi: 10.1016/j.ijhydene.2013.11.075
-
[16]
(16) Lan, J.; Cao, D.;Wang,W.; Ben, T.; Zhu, G. J. Phys. Chem. Lett. 2010, 1 (6), 978. doi: 10.1021/jz900475b
-
[17]
(17) Ren, H.; Ben, T.; Sun, F.; Guo, M.; Jing, X.; Ma, H.; Cai, K.; Qiu, S.; Zhu, G. J. Mater. Chem. 2011, 21 (28), 10348. doi: 10.1039/c1jm11307k
-
[18]
(18) Wang, Z. Y.; Li, G.; Sun, Z. G. Acta Phys. -Chim. Sin. 2013, 29 (11), 2422. [王朝阳, 李钢, 孙志国. 物理化学学报, 2013, 29 (11), 2422.] doi: 10.3866/PKU.WHXB201309021
-
[19]
(19) Xiang, Z.; Cao, D.;Wang,W.; Yang,W.; Han, B.; Lu, J. J. Phys. Chem. C 2012, 116 (9), 5974. doi: 10.1021/jp300137e
-
[20]
(20) Lan, J.; Cao, D.;Wang,W.; Smit, B. ACS Nano 2010, 4 (7), 4225. doi: 10.1021/nn100962r
-
[21]
(21) Sun, Y.; Ben, T.;Wang, L.; Qiu, S.; Sun, H. J. Phys. Chem. Lett. 2010, 1 (19), 2753. doi: 10.1021/jz100894u
-
[22]
(22) Babarao, R.; Dai, S.; Jiang, D. E. Langmuir 2011, 27 (7), 3451. doi: 10.1021/la104827p
-
[23]
(23) Ahmed, A.; Thornton, A.W.; Konstas, K.; Kannam, S. K.; Babarao, R.; Todd, B. D.; Hill, A. J.; Hill, M. R. Langmuir 2013, 29 (50), 15689. doi: 10.1021/la403864u
-
[24]
(24) Srinivasu, K.; Ghosh, S. K. J. Phys. Chem. C 2011, 115 (34), 16984. doi: 10.1021/jp2035218
-
[25]
(25) Wang,W.; Yan, Z. J.; Yuan, Y.; Sun, F. X.; Zhao, M.; Ren, H.; Zhu, G. S. Acta Chim. Sin. 2014, 72 (5), 557. [王维, 闫卓君, 元野, 孙福兴, 赵明, 任浩, 朱广山. 化学学报, 2014, 72 (5), 557.]
-
[26]
(26) Yuan, Y.; Yan, Z. X.; Ren, H.; Liu, Q. Y.; Zhu, G. S.; Sun, F. X. Acta Chim. Sin. 2012, 70 (13), 1446. [元野, 闫卓君, 任浩, 刘青英, 朱广山, 孙福兴. 化学学报, 2012, 70 (13), 1446.] doi: 10.6023/A12040104
-
[27]
(27) Manz, T. A.; Sholl, D. S. J. Chem. Theory Comput. 2010, 6 (8), 2455. doi: 10.1021/ct100125x
-
[28]
(28) Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.;Wang,W.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Angew. Chem. Int. Edit. 2009, 48 (50), 9457. doi: 10.1002/anie.200904637
-
[29]
(29) Frost, H.; Snurr, R. Q. J. Phys. Chem. C 2007, 111 (50), 18794. doi: 10.1021/jp076657p
-
[30]
(30) Wu, X. J.; Yang, X.; Song, J.; Cai,W. Q. Acta Chim. Sin. 2012, 70 (24), 2518. [吴选军, 杨旭, 宋杰, 蔡卫权. 化学学报, 2012, 70 (24), 2518.] doi: 10.6023/A12110858
-
[31]
(31) Wu, X. J.; Zheng, J.; Li, J.; Cai,W. Q. Acta Phys. -Chim. Sin. 2013, 29 (10), 2207. [吴选军, 郑佶, 李江, 蔡卫权. 物理化学学报, 2013, 29 (10), 2207.] doi: 10.3866/PKU.WHXB201307191
-
[32]
(32) Wilmer, C. E.; Farha, O. K.; Bae, Y. S.; Hupp, J. T.; Snurr, R. Q. Energy & Environmental Science 2012, 5 (12), 9849. doi: 10.1039/c2ee23201d
-
[33]
(33) Wilmer, C. E.; Snurr, R. Q. Chem. Eng. J. 2011, 171 (3), 775. doi: 10.1016/j.cej.2010.10.035
-
[34]
(34) Wu, D.;Wang, C.; Liu, B.; Liu, D.; Yang, Q.; Zhong, C. AIChE J. 2012, 58 (7), 2078. doi: 10.1002/aic.v58.7
-
[35]
(35) Schmidt, M.W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; rdon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.;Windus, T. L.; Dupuis, M.; Mont mery, J. A. J. Comput. Chem. 1993, 14, 1347.
-
[36]
(36) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. doi: 10.1080/00268977000101561
-
[37]
(37) Kresse, G.; Furthmuller, J. Comput. Mat. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
-
[38]
(38) Chempath, S.; Clark, L. A.; Snurr, R. Q. J. Chem. Phys. 2003, 118 (16), 7635. doi: 10.1063/1.1562607
-
[39]
(39) Buch, V. J. Chem. Phys. 1994, 100, 7610. doi: 10.1063/1.466854
-
[40]
(40) Wu, X.; Huang, J.; Cai,W.; Jaroniec, M. RSC Adv. 2014, 4 (32), 16503. doi: 10.1039/c4ra00664j
-
[41]
(41) Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fund. 1976, 15, 59. doi: 10.1021/i160057a011
-
[42]
(42) Duren, T.; Sarkisov, L.; Yaghi, O. M.; Snurr, R. Q. Langmuir 2004, 20 (7), 2683. doi: 10.1021/la0355500
-
[43]
(43) Li, H.; Eddaoudi, M.; Keeffe, M. O.; Yaghi, O. M. Nature 1999, 402, 276. doi: 10.1038/46248
-
[44]
(44) Koh, K.;Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2009, 131 (12), 4184. doi: 10.1021/ja809985t
-
[45]
(45) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. Scince 2005, 309 (5743), 2040. doi: 10.1126/science.1116275
-
[46]
(46) Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128 (11), 3494. doi: 10.1021/ja058213h
-
[47]
(47) Yuan, D.; Lu,W.; Zhao, D.; Zhou, H. C. Adv. Mater. 2011, 23 (32), 3723. doi: 10.1002/adma.v23.32
-
[48]
(48) Farha, O. K.; Yazaydin, A. O.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. Nat. Chem. 2010, 2 (11), 944. doi: 10.1038/nchem.834
-
[49]
(49) Yuan, D.; Zhao, D.; Sun, D.; Zhou, H. C. Angew. Chem. Int. Edit. 2010, 49, 5357. doi: 10.1002/anie.v49:31
-
[50]
(50) Furukawa, H.; Ko, N.; , Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M. Science 2010, 329 (5990), 424. doi: 10.1126/science.1192160
-
[51]
(51) Kokalj, A. Comp. Mater. Sci. 2003, 28, 155. doi: 10.1016/S0927-0256(03)00104-6
-
[1]
-
-
-
[1]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[2]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[3]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[4]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[5]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[6]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[7]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[8]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[9]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[10]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[11]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[12]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[13]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[14]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[15]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[16]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[17]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[18]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[19]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[20]
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032
-
[1]
Metrics
- PDF Downloads(480)
- Abstract views(937)
- HTML views(82)