Citation: XU Kun, FENG Jie, CHU Qi, ZHANG Li-Li, LI Wen-Ying. Density Functional Theory Study of Thiophene Hydrodesulfurization on γ-Mo2N(100) Surface[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2063-2070. doi: 10.3866/PKU.WHXB201409221
-
The hydrodesulfurization (HDS) of thiophene on an γ-Mo2N(100) surface was investigated by density functional theory (DFT) and different configurations of thiophene on γ-Mo2N(100) surface were considered. After geometric optimization, it was confirmed that the η5-Mo2N configuration was the most stable adsorption model with an adsorption energy of -0.56 eV, where thiophene absorbed on 4-fold hcp vacant sites parallel to the surface with the S atom bonded to a Mo2 atom. The stable coadsorption of H atoms and thiophene on hcp sites showed that the hcp site is the active site for thiophene HDS on γ-Mo2N(100). A direct desulfurization reaction pathway in HDS of thiophene dominated the process on the γ-Mo2N(100) surface, which could be divided into the removal of the S atom and the hydrogenation saturation of C4 species. To identify the intermediate products and the most probable reaction mechanism of thiophene HDS, a transition state search was carried out. The results indicated that the reaction of the first H atom required an activation energy of 1.69 eV, which was the rate-determining step in the HDS of thiophene. The thiol group (―SH) and butadiene were preferentially formed after hydrogenation of thiophene, and ―SH detached from mercaptan was the intermediate of H2S. 2-Butene and butane were the products of the hydrogenation saturation of butadiene. H2S, 2-butene, and butane were easily desorbed from γ-Mo2N(100) to give the products because of weak adsorption.
-
-
[1]
(1) Chu, Q.; Feng, J.; Li,W. Y.; Xie, K. C. Chin. J. Catal. 2013, 34 (1), 159. [褚绮, 冯杰, 李文英, 谢克昌. 催化学报, 2013, 34 (1), 159.] doi: 10.1016/S1872-2067(11)60509-3
-
[2]
(2) Fuks, D.; Vingurt, D.; Landau, M. V.; Herskowitz, M. J. Phys. Chem. C 2010, 114 (31), 13313. doi: 10.1021/jp1031306
-
[3]
(3) Zhu, Q. L.; Zhao, X. T.; Zhao, Z. X.; Ma, H. J.; Deng, Y. Q. J. Mol. Catal. (China) 2006, 20 (4), 372. [朱全力, 赵旭涛, 赵振兴, 马洪江, 邓友全. 分子催化, 2006, 20 (4), 372.]
-
[4]
(4) Wu,W. C.;Wu, Z. L.; Feng, Z. C.; Ying, P. L.; Li, C. Phys. Chem. Chem. Phys. 2004, 6, 5596. doi: 10.1039/b414360b
-
[5]
(5) Hensen, E. J. M.; Vissenberg, M. J.; De Beer, V. H. J.; Van Veen, J. A. R.; Van Santen, R. A. J. Catal. 1996, 163, 429. doi: 10.1006/jcat.1996.0344
-
[6]
(6) Janak, K. E.; Tanski, J. M.; Churchill, D. G.; Parkin, G. J. Am. Chem. Soc. 2002, 124 (16), 4128.
-
[7]
(7) Guo, J. H.;Watanabe, S.; Janik, M. J.; Ma, X. L.; Song, C. S. Catal. Today 2010, 149 (1), 218.
-
[8]
(8) Wang, H. M.; Iglesia, E. J. Catal. 2010, 273, 245. doi: 10.1016/j.jcat.2010.05.019
-
[9]
(9) Moses, P. G.; Hinnemann, B.; Topsøe, H.; Nørskov, J. K. J. Catal. 2007, 248, 188. doi: 10.1016/j.jcat.2007.02.028
-
[10]
(10) Ni, Z. M.; Shi,W.; Xia, M. Y.; Xue, J. L. Chem. J. Chin. Univ. 2013, 34 (10), 1353. [倪哲明, 施炜, 夏明玉, 薛继龙. 高等学校化学学报, 2013, 34 (10), 1353.]
-
[11]
(11) Zhou, H. Y.; Guo,W. Y.; Li, M.; Zhao, L. M.; Li, S. R.; Li, Y.; Lu, X. Q.; Shan, H. H. ACS Catal. 2011, 1, 1498. doi: 10.1021/cs2002548
-
[12]
(12) Joshi, Y. V.; Ghosh, P.; Venkataraman, P. S.; Delgass,W. N.; Thomson, K. T. J. Phys. Chem. C 2009, 113 (22), 9698. doi: 10.1021/jp809981c
-
[13]
(13) Cristol, S.; Paul, J. F.; Schovsbo, C.; Veilly, E.; Payen, E. J. Catal. 2006, 239, 145. doi: 10.1016/j.jcat.2006.01.015
-
[14]
(14) Tominaga, H.; Nagai, M. Appl. Catal. A 2008, 343, 95.
-
[15]
(15) Puello-Polo, E.; Ayala-G, M.; Brito, J. M. Catal. Commun. 2014, 53, 9. doi: 10.1016/j.catcom.2014.04.018
-
[16]
(16) Ruinart de Brimont, M.; Dupont, C.; Daudin, A.; Geantet, C.; Raybaud, P. J. Catal. 2012, 286, 153. doi: 10.1016/j.jcat.2011.10.022
-
[17]
(17) Gutiérrez, O. Y.; Singh, S.; Schachtl, E.; Kondratieva, E.; Hein, J.; Lercher, J. A. ACS Catal. 2014, 4, 1487. doi: 10.1021/cs500034d
-
[18]
(18) Sun, M. Y.; Nelson, A. E.; Adjaye, J. J. Catal. 2005, 233, 411. doi: 10.1016/j.jcat.2005.05.009
-
[19]
(19) Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Chem. Sci. 2012, 3 (8), 2515. doi: 10.1039/c2sc20539d
-
[20]
(20) Álvarez-Ramírez, F.; Valencia, D.; Klimova, T.; Escobar, J.; García-Cruz, I. Fuel 2013, 110, 212. doi: 10.1016/j.fuel.2012.10.083
-
[21]
(21) Markel, E. J.; van Zee, J.W. J. Catal. 1990, 126, 643. doi: 10.1016/0021-9517(90)90027-H
-
[22]
(22) ng, S.W.; Chen, H. K.; Li,W.; Li, B. Q. Fuel Chem. Div. Prep. 2003, 48 (1), 191.
-
[23]
(23) Nagai, M. Appl. Catal. A 2007, 322, 178. doi: 10.1016/j.apcata.2007.01.006
-
[24]
(24) Wu, Z. L.; Li, C.;Wei, Z. B.; Ying, P. L.; Xin, Q. J. Phys. Chem. B 2002, 106 (5), 979. doi: 10.1021/jp011577l
-
[25]
(25) Ren, J.; Huo, C. F.;Wen, X. D.; Cao, Z.;Wang, J. G.; Li, Y.W.; Jiao, H. J. J. Phys. Chem. B 2006, 100 (45), 22563.
-
[26]
(26) Aegerter, P. A.; Quigley,W.W.; Simpson, G. J.; Ziegler, D. D.; Logan, J.W.; McCrea, K. R.; Glazier, S.; Bussell, M. E. J. Catal. 1996, 164, 109. doi: 10.1006/jcat.1996.0367
-
[27]
(27) McCrea, K. R.; Logan, J.W.; Tarbuck, T. L.; Heiser, J. L.; Bussell, M. E. J. Catal. 1997, 171, 255. doi: 10.1006/jcat.1997.1805
-
[28]
(28) Nagai, M.; Miyao, T.; Tuboi, T. Catal. Lett. 1993, 18 (1), 9.
-
[29]
(29) Kadono, T.; Kubota, T.; Okamoto, Y. Catal. Today 2003, 87 (1-4), 107. doi: 10.1016/j.cattod.2003.09.009
-
[30]
(30) Frapper, G.; Pélissier, M. Hafner, J. J. Phys. Chem. B 2000, 104 (50), 11972. doi: 10.1021/jp0026179
-
[31]
(31) Volpe, L.; Boudart, M. J. Solid State Chem. 1985, 59 (3), 332. doi: 10.1016/0022-4596(85)90301-9
-
[32]
(32) Dewangan, K.; Patil, S. S.; Joag, D. S.; More, M. A.; Gajbhiye, N. J. Phys. Chem. C 2010, 114 (35), 14710. doi: 10.1021/jp103008f
-
[33]
(33) Zhao, E.;Wang, J. P.;Wu, Z. J. Phys. Status Solidi B 2010, 247 (5), 1207.
-
[34]
(34) Zheng,W. Q.; Cotter, T. P.; Kaghazchi, P. Jacob, T.; Frank, B.; Schlichte, K.; Zhang,W.; Su, D. S.; Schuth, F.; Schlögl, R. J. Am. Chem. Soc. 2013, 135 (9), 3458. doi: 10.1021/ja309734u
-
[35]
(35) Li, G. X.; Chen, X.W.; Bai, J. D.; Lan, Z. Q.; Guo, J. Acta Phys. -Chim. Sin. 2010, 26 (5), 1448. [黎光旭, 陈晓伟, 白加栋, 蓝志强, 郭进. 物理化学学报, 2010, 26 (5), 1448.] doi: 10.3866/PKU.WHXB20100540
-
[36]
(36) Orita, H.; Uchida, K.; Itoh, N. J. Mol. Catal. A: Chem. 2003, 193 (1), 197.
-
[37]
(37) Machon, D.; Daisenberger, D.; Soignard, E.; Shen, G.; Kawashima, T.; Takayama Muromachi, E.; McMillan, P. Phys. Status Solidi A 2006, 203 (5), 831. doi: 10.1002/pssa.v203:5
-
[38]
(38) Gajbhiye, N.; Ningthoujam, R. Phys. Status Solidi C 2004, 1 (12), 3449.
-
[39]
(39) Zheng, X. Z.; Zhang, Y. H.; Huang, S. P.; Liu, H.;Wang, P.; Tian, H. P. Comput. Theor. Chem. 2012, 979, 64. doi: 10.1016/j.comptc.2011.10.016
-
[40]
(40) Logadóttir, Á.; Moses, P. G.; Hinnemann, B.; Topsøe, N. Y.; Knudsen, K. G.; Topsøe, H.; Nørskov, J. K. Catal. Today 2006, 111 (1), 44.
-
[41]
(41) Sullivan, D. L.; Ekerdt, J. G. J. Catal. 1998, 178, 226. doi: 10.1006/jcat.1998.2162
-
[42]
(42) Wu, Z. L.; Li, C.; Ying, P. L.;Wei, Z. B.; Xin, Q. J. Phys. Chem. B 2001, 105 (38), 9183. doi: 10.1021/jp003864f
-
[1]
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[3]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[4]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[5]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[6]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[7]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[8]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[9]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[10]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[11]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[12]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[13]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[14]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[15]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[16]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[17]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[18]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[19]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[20]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[1]
Metrics
- PDF Downloads(480)
- Abstract views(673)
- HTML views(13)