Citation:
	            
		            XU  Kun, FENG  Jie, CHU  Qi, ZHANG  Li-Li, LI  Wen-Ying. Density Functional Theory Study of Thiophene Hydrodesulfurization on γ-Mo2N(100) Surface[J]. Acta Physico-Chimica Sinica,
							;2014, 30(11): 2063-2070.
						
							doi:
								10.3866/PKU.WHXB201409221
						
					
				
					 
				
	        
- 
	                	The hydrodesulfurization (HDS) of thiophene on an γ-Mo2N(100) surface was investigated by density functional theory (DFT) and different configurations of thiophene on γ-Mo2N(100) surface were considered. After geometric optimization, it was confirmed that the η5-Mo2N configuration was the most stable adsorption model with an adsorption energy of -0.56 eV, where thiophene absorbed on 4-fold hcp vacant sites parallel to the surface with the S atom bonded to a Mo2 atom. The stable coadsorption of H atoms and thiophene on hcp sites showed that the hcp site is the active site for thiophene HDS on γ-Mo2N(100). A direct desulfurization reaction pathway in HDS of thiophene dominated the process on the γ-Mo2N(100) surface, which could be divided into the removal of the S atom and the hydrogenation saturation of C4 species. To identify the intermediate products and the most probable reaction mechanism of thiophene HDS, a transition state search was carried out. The results indicated that the reaction of the first H atom required an activation energy of 1.69 eV, which was the rate-determining step in the HDS of thiophene. The thiol group (―SH) and butadiene were preferentially formed after hydrogenation of thiophene, and ―SH detached from mercaptan was the intermediate of H2S. 2-Butene and butane were the products of the hydrogenation saturation of butadiene. H2S, 2-butene, and butane were easily desorbed from γ-Mo2N(100) to give the products because of weak adsorption. 
- 
	                	  
- 
	                	
- 
			
                    [1]
                
			(1) Chu, Q.; Feng, J.; Li,W. Y.; Xie, K. C. Chin. J. Catal. 2013, 34 (1), 159. [褚绮, 冯杰, 李文英, 谢克昌. 催化学报, 2013, 34 (1), 159.] doi: 10.1016/S1872-2067(11)60509-3 
 
- 
			
                    [2]
                
			(2) Fuks, D.; Vingurt, D.; Landau, M. V.; Herskowitz, M. J. Phys. Chem. C 2010, 114 (31), 13313. doi: 10.1021/jp1031306 
 
- 
			
                    [3]
                
			(3) Zhu, Q. L.; Zhao, X. T.; Zhao, Z. X.; Ma, H. J.; Deng, Y. Q. J. Mol. Catal. (China) 2006, 20 (4), 372. [朱全力, 赵旭涛, 赵振兴, 马洪江, 邓友全. 分子催化, 2006, 20 (4), 372.] 
 
- 
			
                    [4]
                
			(4) Wu,W. C.;Wu, Z. L.; Feng, Z. C.; Ying, P. L.; Li, C. Phys. Chem. Chem. Phys. 2004, 6, 5596. doi: 10.1039/b414360b 
 
- 
			
                    [5]
                
			(5) Hensen, E. J. M.; Vissenberg, M. J.; De Beer, V. H. J.; Van Veen, J. A. R.; Van Santen, R. A. J. Catal. 1996, 163, 429. doi: 10.1006/jcat.1996.0344 
 
- 
			
                    [6]
                
			(6) Janak, K. E.; Tanski, J. M.; Churchill, D. G.; Parkin, G. J. Am. Chem. Soc. 2002, 124 (16), 4128. 
 
- 
			
                    [7]
                
			(7) Guo, J. H.;Watanabe, S.; Janik, M. J.; Ma, X. L.; Song, C. S. Catal. Today 2010, 149 (1), 218. 
 
- 
			
                    [8]
                
			(8) Wang, H. M.; Iglesia, E. J. Catal. 2010, 273, 245. doi: 10.1016/j.jcat.2010.05.019 
 
- 
			
                    [9]
                
			(9) Moses, P. G.; Hinnemann, B.; Topsøe, H.; Nørskov, J. K. J. Catal. 2007, 248, 188. doi: 10.1016/j.jcat.2007.02.028 
 
- 
			
                    [10]
                
			(10) Ni, Z. M.; Shi,W.; Xia, M. Y.; Xue, J. L. Chem. J. Chin. Univ. 2013, 34 (10), 1353. [倪哲明, 施炜, 夏明玉, 薛继龙. 高等学校化学学报, 2013, 34 (10), 1353.] 
 
- 
			
                    [11]
                
			(11) Zhou, H. Y.; Guo,W. Y.; Li, M.; Zhao, L. M.; Li, S. R.; Li, Y.; Lu, X. Q.; Shan, H. H. ACS Catal. 2011, 1, 1498. doi: 10.1021/cs2002548 
 
- 
			
                    [12]
                
			(12) Joshi, Y. V.; Ghosh, P.; Venkataraman, P. S.; Delgass,W. N.; Thomson, K. T. J. Phys. Chem. C 2009, 113 (22), 9698. doi: 10.1021/jp809981c 
 
- 
			
                    [13]
                
			(13) Cristol, S.; Paul, J. F.; Schovsbo, C.; Veilly, E.; Payen, E. J. Catal. 2006, 239, 145. doi: 10.1016/j.jcat.2006.01.015 
 
- 
			
                    [14]
                
			(14) Tominaga, H.; Nagai, M. Appl. Catal. A 2008, 343, 95. 
 
- 
			
                    [15]
                
			(15) Puello-Polo, E.; Ayala-G, M.; Brito, J. M. Catal. Commun. 2014, 53, 9. doi: 10.1016/j.catcom.2014.04.018 
 
- 
			
                    [16]
                
			(16) Ruinart de Brimont, M.; Dupont, C.; Daudin, A.; Geantet, C.; Raybaud, P. J. Catal. 2012, 286, 153. doi: 10.1016/j.jcat.2011.10.022 
 
- 
			
                    [17]
                
			(17) Gutiérrez, O. Y.; Singh, S.; Schachtl, E.; Kondratieva, E.; Hein, J.; Lercher, J. A. ACS Catal. 2014, 4, 1487. doi: 10.1021/cs500034d 
 
- 
			
                    [18]
                
			(18) Sun, M. Y.; Nelson, A. E.; Adjaye, J. J. Catal. 2005, 233, 411. doi: 10.1016/j.jcat.2005.05.009 
 
- 
			
                    [19]
                
			(19) Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Chem. Sci. 2012, 3 (8), 2515. doi: 10.1039/c2sc20539d 
 
- 
			
                    [20]
                
			(20) Álvarez-Ramírez, F.; Valencia, D.; Klimova, T.; Escobar, J.; García-Cruz, I. Fuel 2013, 110, 212. doi: 10.1016/j.fuel.2012.10.083 
 
- 
			
                    [21]
                
			(21) Markel, E. J.; van Zee, J.W. J. Catal. 1990, 126, 643. doi: 10.1016/0021-9517(90)90027-H 
 
- 
			
                    [22]
                
			(22) ng, S.W.; Chen, H. K.; Li,W.; Li, B. Q. Fuel Chem. Div. Prep. 2003, 48 (1), 191. 
 
- 
			
                    [23]
                
			(23) Nagai, M. Appl. Catal. A 2007, 322, 178. doi: 10.1016/j.apcata.2007.01.006 
 
- 
			
                    [24]
                
			(24) Wu, Z. L.; Li, C.;Wei, Z. B.; Ying, P. L.; Xin, Q. J. Phys. Chem. B 2002, 106 (5), 979. doi: 10.1021/jp011577l 
 
- 
			
                    [25]
                
			(25) Ren, J.; Huo, C. F.;Wen, X. D.; Cao, Z.;Wang, J. G.; Li, Y.W.; Jiao, H. J. J. Phys. Chem. B 2006, 100 (45), 22563. 
 
- 
			
                    [26]
                
			(26) Aegerter, P. A.; Quigley,W.W.; Simpson, G. J.; Ziegler, D. D.; Logan, J.W.; McCrea, K. R.; Glazier, S.; Bussell, M. E. J. Catal. 1996, 164, 109. doi: 10.1006/jcat.1996.0367 
 
- 
			
                    [27]
                
			(27) McCrea, K. R.; Logan, J.W.; Tarbuck, T. L.; Heiser, J. L.; Bussell, M. E. J. Catal. 1997, 171, 255. doi: 10.1006/jcat.1997.1805 
 
- 
			
                    [28]
                
			(28) Nagai, M.; Miyao, T.; Tuboi, T. Catal. Lett. 1993, 18 (1), 9. 
 
- 
			
                    [29]
                
			(29) Kadono, T.; Kubota, T.; Okamoto, Y. Catal. Today 2003, 87 (1-4), 107. doi: 10.1016/j.cattod.2003.09.009 
 
- 
			
                    [30]
                
			(30) Frapper, G.; Pélissier, M. Hafner, J. J. Phys. Chem. B 2000, 104 (50), 11972. doi: 10.1021/jp0026179 
 
- 
			
                    [31]
                
			(31) Volpe, L.; Boudart, M. J. Solid State Chem. 1985, 59 (3), 332. doi: 10.1016/0022-4596(85)90301-9 
 
- 
			
                    [32]
                
			(32) Dewangan, K.; Patil, S. S.; Joag, D. S.; More, M. A.; Gajbhiye, N. J. Phys. Chem. C 2010, 114 (35), 14710. doi: 10.1021/jp103008f 
 
- 
			
                    [33]
                
			(33) Zhao, E.;Wang, J. P.;Wu, Z. J. Phys. Status Solidi B 2010, 247 (5), 1207. 
 
- 
			
                    [34]
                
			(34) Zheng,W. Q.; Cotter, T. P.; Kaghazchi, P. Jacob, T.; Frank, B.; Schlichte, K.; Zhang,W.; Su, D. S.; Schuth, F.; Schlögl, R. J. Am. Chem. Soc. 2013, 135 (9), 3458. doi: 10.1021/ja309734u 
 
- 
			
                    [35]
                
			(35) Li, G. X.; Chen, X.W.; Bai, J. D.; Lan, Z. Q.; Guo, J. Acta Phys. -Chim. Sin. 2010, 26 (5), 1448. [黎光旭, 陈晓伟, 白加栋, 蓝志强, 郭进. 物理化学学报, 2010, 26 (5), 1448.] doi: 10.3866/PKU.WHXB20100540 
 
- 
			
                    [36]
                
			(36) Orita, H.; Uchida, K.; Itoh, N. J. Mol. Catal. A: Chem. 2003, 193 (1), 197. 
 
- 
			
                    [37]
                
			(37) Machon, D.; Daisenberger, D.; Soignard, E.; Shen, G.; Kawashima, T.; Takayama Muromachi, E.; McMillan, P. Phys. Status Solidi A 2006, 203 (5), 831. doi: 10.1002/pssa.v203:5 
 
- 
			
                    [38]
                
			(38) Gajbhiye, N.; Ningthoujam, R. Phys. Status Solidi C 2004, 1 (12), 3449. 
 
- 
			
                    [39]
                
			(39) Zheng, X. Z.; Zhang, Y. H.; Huang, S. P.; Liu, H.;Wang, P.; Tian, H. P. Comput. Theor. Chem. 2012, 979, 64. doi: 10.1016/j.comptc.2011.10.016 
 
- 
			
                    [40]
                
			(40) Logadóttir, Á.; Moses, P. G.; Hinnemann, B.; Topsøe, N. Y.; Knudsen, K. G.; Topsøe, H.; Nørskov, J. K. Catal. Today 2006, 111 (1), 44. 
 
- 
			
                    [41]
                
			(41) Sullivan, D. L.; Ekerdt, J. G. J. Catal. 1998, 178, 226. doi: 10.1006/jcat.1998.2162 
 
- 
			
                    [42]
                
			(42) Wu, Z. L.; Li, C.; Ying, P. L.;Wei, Z. B.; Xin, Q. J. Phys. Chem. B 2001, 105 (38), 9183. doi: 10.1021/jp003864f 
 
 
- 
			
                    [1]
                
			
- 
	                	
						  
- 
	                	
- 
				[1]
				Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117 
- 
				[2]
				Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101 
- 
				[3]
				Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095 
- 
				[4]
				Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046 
- 
				[5]
				Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032 
- 
				[6]
				Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010 
- 
				[7]
				Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072 
- 
				[8]
				Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058 
- 
				[9]
				Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024 
- 
				[10]
				Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302 
- 
				[11]
				Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172 
- 
				[12]
				Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210 
- 
				[13]
				Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018 
- 
				[14]
				Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009 
- 
				[15]
				Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089 
- 
				[16]
				Lancanghong Chen , Xingtai Yu , Tianlei Zhao , Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089 
- 
				[17]
				Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019 
- 
				[18]
				Lijun Yang . Thoughts and Practices on Enhancing Students’ Comprehension through Visualized Instruction of Structural Chemistry. University Chemistry, 2025, 40(10): 295-302. doi: 10.12461/PKU.DXHX202411048 
- 
				[19]
				Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022 
- 
				[20]
				Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166 
 
- 
				[1]
				
Metrics
- PDF Downloads(480)
- Abstract views(854)
- HTML views(19)
 
  Login In
Login In
 
	                     
	                     
	                     
	                     DownLoad:
DownLoad: