Citation: XU Kun, FENG Jie, CHU Qi, ZHANG Li-Li, LI Wen-Ying. Density Functional Theory Study of Thiophene Hydrodesulfurization on γ-Mo2N(100) Surface[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2063-2070. doi: 10.3866/PKU.WHXB201409221 shu

Density Functional Theory Study of Thiophene Hydrodesulfurization on γ-Mo2N(100) Surface

  • Received Date: 20 June 2014
    Available Online: 22 September 2014

    Fund Project: 国家高技术研究发展计划项目(863) (2011AA05A204)资助 (863) (2011AA05A204)

  • The hydrodesulfurization (HDS) of thiophene on an γ-Mo2N(100) surface was investigated by density functional theory (DFT) and different configurations of thiophene on γ-Mo2N(100) surface were considered. After geometric optimization, it was confirmed that the η5-Mo2N configuration was the most stable adsorption model with an adsorption energy of -0.56 eV, where thiophene absorbed on 4-fold hcp vacant sites parallel to the surface with the S atom bonded to a Mo2 atom. The stable coadsorption of H atoms and thiophene on hcp sites showed that the hcp site is the active site for thiophene HDS on γ-Mo2N(100). A direct desulfurization reaction pathway in HDS of thiophene dominated the process on the γ-Mo2N(100) surface, which could be divided into the removal of the S atom and the hydrogenation saturation of C4 species. To identify the intermediate products and the most probable reaction mechanism of thiophene HDS, a transition state search was carried out. The results indicated that the reaction of the first H atom required an activation energy of 1.69 eV, which was the rate-determining step in the HDS of thiophene. The thiol group (―SH) and butadiene were preferentially formed after hydrogenation of thiophene, and ―SH detached from mercaptan was the intermediate of H2S. 2-Butene and butane were the products of the hydrogenation saturation of butadiene. H2S, 2-butene, and butane were easily desorbed from γ-Mo2N(100) to give the products because of weak adsorption.

  • 加载中
    1. [1]

      (1) Chu, Q.; Feng, J.; Li,W. Y.; Xie, K. C. Chin. J. Catal. 2013, 34 (1), 159. [褚绮, 冯杰, 李文英, 谢克昌. 催化学报, 2013, 34 (1), 159.] doi: 10.1016/S1872-2067(11)60509-3

    2. [2]

      (2) Fuks, D.; Vingurt, D.; Landau, M. V.; Herskowitz, M. J. Phys. Chem. C 2010, 114 (31), 13313. doi: 10.1021/jp1031306

    3. [3]

      (3) Zhu, Q. L.; Zhao, X. T.; Zhao, Z. X.; Ma, H. J.; Deng, Y. Q. J. Mol. Catal. (China) 2006, 20 (4), 372. [朱全力, 赵旭涛, 赵振兴, 马洪江, 邓友全. 分子催化, 2006, 20 (4), 372.]

    4. [4]

      (4) Wu,W. C.;Wu, Z. L.; Feng, Z. C.; Ying, P. L.; Li, C. Phys. Chem. Chem. Phys. 2004, 6, 5596. doi: 10.1039/b414360b

    5. [5]

      (5) Hensen, E. J. M.; Vissenberg, M. J.; De Beer, V. H. J.; Van Veen, J. A. R.; Van Santen, R. A. J. Catal. 1996, 163, 429. doi: 10.1006/jcat.1996.0344

    6. [6]

      (6) Janak, K. E.; Tanski, J. M.; Churchill, D. G.; Parkin, G. J. Am. Chem. Soc. 2002, 124 (16), 4128.

    7. [7]

      (7) Guo, J. H.;Watanabe, S.; Janik, M. J.; Ma, X. L.; Song, C. S. Catal. Today 2010, 149 (1), 218.

    8. [8]

      (8) Wang, H. M.; Iglesia, E. J. Catal. 2010, 273, 245. doi: 10.1016/j.jcat.2010.05.019

    9. [9]

      (9) Moses, P. G.; Hinnemann, B.; Topsøe, H.; Nørskov, J. K. J. Catal. 2007, 248, 188. doi: 10.1016/j.jcat.2007.02.028

    10. [10]

      (10) Ni, Z. M.; Shi,W.; Xia, M. Y.; Xue, J. L. Chem. J. Chin. Univ. 2013, 34 (10), 1353. [倪哲明, 施炜, 夏明玉, 薛继龙. 高等学校化学学报, 2013, 34 (10), 1353.]

    11. [11]

      (11) Zhou, H. Y.; Guo,W. Y.; Li, M.; Zhao, L. M.; Li, S. R.; Li, Y.; Lu, X. Q.; Shan, H. H. ACS Catal. 2011, 1, 1498. doi: 10.1021/cs2002548

    12. [12]

      (12) Joshi, Y. V.; Ghosh, P.; Venkataraman, P. S.; Delgass,W. N.; Thomson, K. T. J. Phys. Chem. C 2009, 113 (22), 9698. doi: 10.1021/jp809981c

    13. [13]

      (13) Cristol, S.; Paul, J. F.; Schovsbo, C.; Veilly, E.; Payen, E. J. Catal. 2006, 239, 145. doi: 10.1016/j.jcat.2006.01.015

    14. [14]

      (14) Tominaga, H.; Nagai, M. Appl. Catal. A 2008, 343, 95.

    15. [15]

      (15) Puello-Polo, E.; Ayala-G, M.; Brito, J. M. Catal. Commun. 2014, 53, 9. doi: 10.1016/j.catcom.2014.04.018

    16. [16]

      (16) Ruinart de Brimont, M.; Dupont, C.; Daudin, A.; Geantet, C.; Raybaud, P. J. Catal. 2012, 286, 153. doi: 10.1016/j.jcat.2011.10.022

    17. [17]

      (17) Gutiérrez, O. Y.; Singh, S.; Schachtl, E.; Kondratieva, E.; Hein, J.; Lercher, J. A. ACS Catal. 2014, 4, 1487. doi: 10.1021/cs500034d

    18. [18]

      (18) Sun, M. Y.; Nelson, A. E.; Adjaye, J. J. Catal. 2005, 233, 411. doi: 10.1016/j.jcat.2005.05.009

    19. [19]

      (19) Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Chem. Sci. 2012, 3 (8), 2515. doi: 10.1039/c2sc20539d

    20. [20]

      (20) Álvarez-Ramírez, F.; Valencia, D.; Klimova, T.; Escobar, J.; García-Cruz, I. Fuel 2013, 110, 212. doi: 10.1016/j.fuel.2012.10.083

    21. [21]

      (21) Markel, E. J.; van Zee, J.W. J. Catal. 1990, 126, 643. doi: 10.1016/0021-9517(90)90027-H

    22. [22]

      (22) ng, S.W.; Chen, H. K.; Li,W.; Li, B. Q. Fuel Chem. Div. Prep. 2003, 48 (1), 191.

    23. [23]

      (23) Nagai, M. Appl. Catal. A 2007, 322, 178. doi: 10.1016/j.apcata.2007.01.006

    24. [24]

      (24) Wu, Z. L.; Li, C.;Wei, Z. B.; Ying, P. L.; Xin, Q. J. Phys. Chem. B 2002, 106 (5), 979. doi: 10.1021/jp011577l

    25. [25]

      (25) Ren, J.; Huo, C. F.;Wen, X. D.; Cao, Z.;Wang, J. G.; Li, Y.W.; Jiao, H. J. J. Phys. Chem. B 2006, 100 (45), 22563.

    26. [26]

      (26) Aegerter, P. A.; Quigley,W.W.; Simpson, G. J.; Ziegler, D. D.; Logan, J.W.; McCrea, K. R.; Glazier, S.; Bussell, M. E. J. Catal. 1996, 164, 109. doi: 10.1006/jcat.1996.0367

    27. [27]

      (27) McCrea, K. R.; Logan, J.W.; Tarbuck, T. L.; Heiser, J. L.; Bussell, M. E. J. Catal. 1997, 171, 255. doi: 10.1006/jcat.1997.1805

    28. [28]

      (28) Nagai, M.; Miyao, T.; Tuboi, T. Catal. Lett. 1993, 18 (1), 9.

    29. [29]

      (29) Kadono, T.; Kubota, T.; Okamoto, Y. Catal. Today 2003, 87 (1-4), 107. doi: 10.1016/j.cattod.2003.09.009

    30. [30]

      (30) Frapper, G.; Pélissier, M. Hafner, J. J. Phys. Chem. B 2000, 104 (50), 11972. doi: 10.1021/jp0026179

    31. [31]

      (31) Volpe, L.; Boudart, M. J. Solid State Chem. 1985, 59 (3), 332. doi: 10.1016/0022-4596(85)90301-9

    32. [32]

      (32) Dewangan, K.; Patil, S. S.; Joag, D. S.; More, M. A.; Gajbhiye, N. J. Phys. Chem. C 2010, 114 (35), 14710. doi: 10.1021/jp103008f

    33. [33]

      (33) Zhao, E.;Wang, J. P.;Wu, Z. J. Phys. Status Solidi B 2010, 247 (5), 1207.

    34. [34]

      (34) Zheng,W. Q.; Cotter, T. P.; Kaghazchi, P. Jacob, T.; Frank, B.; Schlichte, K.; Zhang,W.; Su, D. S.; Schuth, F.; Schlögl, R. J. Am. Chem. Soc. 2013, 135 (9), 3458. doi: 10.1021/ja309734u

    35. [35]

      (35) Li, G. X.; Chen, X.W.; Bai, J. D.; Lan, Z. Q.; Guo, J. Acta Phys. -Chim. Sin. 2010, 26 (5), 1448. [黎光旭, 陈晓伟, 白加栋, 蓝志强, 郭进. 物理化学学报, 2010, 26 (5), 1448.] doi: 10.3866/PKU.WHXB20100540

    36. [36]

      (36) Orita, H.; Uchida, K.; Itoh, N. J. Mol. Catal. A: Chem. 2003, 193 (1), 197.

    37. [37]

      (37) Machon, D.; Daisenberger, D.; Soignard, E.; Shen, G.; Kawashima, T.; Takayama Muromachi, E.; McMillan, P. Phys. Status Solidi A 2006, 203 (5), 831. doi: 10.1002/pssa.v203:5

    38. [38]

      (38) Gajbhiye, N.; Ningthoujam, R. Phys. Status Solidi C 2004, 1 (12), 3449.

    39. [39]

      (39) Zheng, X. Z.; Zhang, Y. H.; Huang, S. P.; Liu, H.;Wang, P.; Tian, H. P. Comput. Theor. Chem. 2012, 979, 64. doi: 10.1016/j.comptc.2011.10.016

    40. [40]

      (40) Logadóttir, Á.; Moses, P. G.; Hinnemann, B.; Topsøe, N. Y.; Knudsen, K. G.; Topsøe, H.; Nørskov, J. K. Catal. Today 2006, 111 (1), 44.

    41. [41]

      (41) Sullivan, D. L.; Ekerdt, J. G. J. Catal. 1998, 178, 226. doi: 10.1006/jcat.1998.2162

    42. [42]

      (42) Wu, Z. L.; Li, C.; Ying, P. L.;Wei, Z. B.; Xin, Q. J. Phys. Chem. B 2001, 105 (38), 9183. doi: 10.1021/jp003864f


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    5. [5]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

Metrics
  • PDF Downloads(480)
  • Abstract views(672)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return