Citation:
ZHOU Xia-Yu, RONG Chun-Ying, LU Tian, LIU Shu-Bin. Hirshfeld Charge as a Quantitative Measure of Electrophilicity and Nucleophilicity: Nitrogen-Containing Systems[J]. Acta Physico-Chimica Sinica,
;2014, 30(11): 2055-2062.
doi:
10.3866/PKU.WHXB201409193
-
To accurately predict the capability and possible reaction site for atoms in molecules to donate or accept electrons in chemical processes, i.e., to quantitatively determine electrophilicity, nucleophilicity, and regioselectivity, is an important yet incomplete task. Earlier, we proposed using the Hirshfeld charge and information gain as two equivalent descriptors for this purpose, based on the Information Conservation Principle we recently proposed. This idea was successfully applied to two series of molecular systems to confirm its validity. However, our previous work is hindered by the fact that the involved element is carbon. It is unclear if stockit applies to other elements and to different valence states of the same element. In this study, to address these issues, the method was applied to nitrogen-containing systems. Five different cate ries of compounds were studied, including benzenediazonium, azodicarboxylate, diazo, and primary and secondary amines, with a total of 40 molecules. The results show that there are strong linear correlations between the Hirshfeld charge and their experimental scales of electrophilicity and nucleophilicity. However, these correlations depend on the valence state and bonding environment of the nitrogen element. The linear relationship only holds within the same cate ry. Possible reasons for this observation are discussed.
-
-
-
[1]
(1) March, J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure;Wiley: New York, USA, 1985.
-
[2]
(2) Swain, C. G.; Scott, C. B. J. Am. Chem. Soc. 1953, 75, 141. doi: 10.1021/ja01097a041
-
[3]
(3) Ritchie, C. D. Accounts Chem. Res. 1972, 5, 348. doi: 10.1021/ar50058a005
-
[4]
(4) Mayr, H.; Patz, M. Angew. Chem. Int. Edit. 1994, 33, 938.
-
[5]
(5) Parr, R. G.; Yang,W. Density-Functional Theory of Atoms and Molecules. In International Series of Monographs on Chemistry; Clarendon Press: Oxford, England, 1989.
-
[6]
(6) Geerlings, P.; DeProft, F.; Langenaeker,W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p
-
[7]
(7) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. doi: 10.1021/cr040109f
-
[8]
(8) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
-
[9]
(9) Parr, R. G.; Yang,W. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036
-
[10]
(10) Parr, R. G.; von Szentpaly, L.; Liu, S. B. J. Am. Chem. Soc. 1999, 121, 1922. doi: 10.1021/ja983494x
-
[11]
(11) Jaramillo, P.; Perez, P.; Contreras, R.; Tiznado,W.; Fuentealba, P. J. Phys. Chem. A 2006, 110, 8181. doi: 10.1021/jp057351q
-
[12]
(12) Ayers, P.W.; Anderson, J. S. M.; Rodriguez, J. I.; Jawed, Z. Phys. Chem. Chem. Phys. 2005, 7, 1918. doi: 10.1039/b500996k
-
[13]
(13) Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. A 2005, 109, 205. doi: 10.1021/jp046577a
-
[14]
(14) Ayers, P.W.; Morell, C.; De Proft, D.; Geerlings, P. Chem. Eur. J. 2007, 13, 8240.
-
[15]
(15) Liu, S. B.; Ess, D. H.; Schauer, C. K. J. Phys. Chem. A 2011, 115, 4738. doi: 10.1021/jp112319d
-
[16]
(16) Kumar, N.; Liu, S. B.; Kozlowski, P. M. J. Phys. Chem. Lett. 2012, 3, 1035.
-
[17]
(17) Markownikoff,W. Ann. Pharm. (Lem , Ger.) 1870, 153, 228.
-
[18]
(18) Baldwin, J. E. J. Chem. Soc. Chem. Commun. 1976, 1976, 734.
-
[19]
(19) Fürst, A.; Plattner, P. A. Helv. Chim. Acta 1949, 32, 275.
-
[20]
(20) Liu, S. B.; Rong, C. Y.; Lu, T. J. Phys. Chem. A 2014, 118, 3698. doi: 10.1021/jp5032702
-
[21]
(21) Hirshfeld, F. Theor. Chim. Acc. 1977, 44, 129. doi: 10.1007/BF00549096
-
[22]
(22) Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379. doi: 10.1002/bltj.1948.27.issue-3
-
[23]
(23) Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244
-
[24]
(24) Kullback, S.; Leibler, R.A. Ann. Math. Stat. 1951, 22, 79.
-
[25]
(25) Bader, R. F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, England, 1990.
-
[26]
(26) Rong, C. Y.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140, 024109. doi: 10.1063/1.4860969
-
[27]
(27) Lu, T.; Chen, F.WActa Phys. -Chim. Sin. 2012, 28, 1. [卢天, 陈正武. 物理化学学报, 2012, 28, 1.] doi: 10.3866/PKU.WHXB2012281
-
[28]
(28) Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879
-
[29]
(29) Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105, 7391. doi: 10.1021/jp004414q
-
[30]
(30) Parr, R. G.; Ayers, P.W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109, 3957. doi: 10.1021/jp0404596
-
[31]
(31) Ayers, P.W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5
-
[32]
(32) Mayr, H.; Bug, T.; tta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. J. Am. Chem. Soc. 2001, 123, 9500. doi: 10.1021/ja010890y
-
[33]
(33) Lucius, R.; Loos, R.; Mayr, H. Angew. Chem. Int. Edit. 2002, 41, 91. doi: 10.1002/1521-3773(20020104)41:1<>1.0.CO;2-5
-
[34]
(34) Mayr, H.; Kempf, B.; Ofial, A. R. Accounts Chem. Res. 2003, 36, 66. doi: 10.1021/ar020094c
-
[35]
(35) (a) Pérez, P. J. Org. Chem. 2003, 68, 5886.(b) Mayr, H.; Hartnagel, M.; Grimm, K. Liebigs Ann. /Recl.1997, 55.
-
[36]
(36) Kanzian, T.; Mayr, H. Chem. Eur. J. 2010, 16, 11670. doi: 10.1002/chem.v16:38
-
[37]
(37) Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H. Chem. Eur. J. 2003, 9, 4068.
-
[38]
(38) Brotzel, F.; Chu, Y. C.; Mayr, H. J. Org. Chem. 2007, 72, 3679. doi: 10.1021/jo062586z
-
[39]
(39) Ditchfield, R.; Hehre,W. J.; Pople, J. J. Chem. Phys. 1971, 54, 724. doi: 10.1063/1.1674902
-
[40]
(40) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
-
[41]
(41) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.:Wallingford, CT, 2009.
-
[42]
(42) Cossi, M.; Rega, N.; Scalmani, G.; Baronem, V. J. Comput. Chem. 2003, 24, 669. doi: 10.1002/jcc.10189
-
[43]
(43) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5
-
[44]
(44) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247
-
[45]
(45) Liu, S. B. J. Phys. Chem. A 2013, 117, 962. doi: 10.1021/jp312521z
-
[46]
(46) Liu, S. B.; Pedersen, L. G. J. Phys. Chem. A 2009, 113, 3648. doi: 10.1021/jp811250r
-
[47]
(47) Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys. 2009, 131, 164107. doi: 10.1063/1.3251124
-
[48]
(48) Huang, Y.; Liu, L.; Liu,W.; Liu, S. G.; Liu, S. B. J. Phys. Chem. A 2011, 115, 14697. doi: 10.1021/jp209540p
-
[49]
(49) Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010, 114, 5913. doi: 10.1021/jp101329f
-
[50]
(50) Huang, Y.; Zhong, A. G.; Yang, Q. S.; Liu, S. B. J. Chem. Phys. 2011, 134, 084103. doi: 10.1063/1.3555760
-
[1]
-
-
-
[1]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[2]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[3]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[4]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[5]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[6]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[7]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[8]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[9]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[10]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[11]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[12]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[13]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[14]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[15]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[16]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[17]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[18]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[19]
Daojuan Cheng , Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105
-
[20]
Jiying Liu , Zehua Li , Wenjing Zhang , Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085
-
[1]
Metrics
- PDF Downloads(744)
- Abstract views(1344)
- HTML views(48)