Citation: SONG Hua-Jie, ZHOU Ting-Ting, HUANG Feng-Lei, HONG Tao. Microscopic Physical and Chemical Responses of Slip Systems in the β-HMX Single Crystal under Low Pressure and Long Pulse Loading[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2024-2034. doi: 10.3866/PKU.WHXB201409192 shu

Microscopic Physical and Chemical Responses of Slip Systems in the β-HMX Single Crystal under Low Pressure and Long Pulse Loading

  • Received Date: 25 June 2014
    Available Online: 19 September 2014

    Fund Project: 国家自然科学基金(11372053, 11172044, 11221202) (11372053, 11172044, 11221202)爆炸科学与技术国家重点实验室开放基金(北京理工大学)(KFJJ14-06M)资助项目 (北京理工大学)(KFJJ14-06M)

  • From the viewpoint of the elastic-plastic microscopic mechanisms of explosives, we investigated the microscopic physical and chemical responses of seven dominant slip systems in the β-octahydro-1,3,5,7- tetranitro-1,3,5,7-tetrazocine (β-HMX) single crystal under low pressure and long pulse loading using the ReaxFFforce- field-based molecular dynamics method. The simulation results suggest that the seven slip systems exhibit different physical and chemical responses for loading orientations normal to the (001), (101), (100), (011), (111), (110), and (010) crystal planes. The shear stress, energy, temperature, and chemical reaction strongly depend on the loading direction. For the (010) plane, the shear stress barrier is very high, which leads to fast energy accumulation and temperature increment that contribute to the early bond-breaking process, making it the most sensitive direction. For the (001) plane, the small shear stress barrier results in slow energy accumulation and temperature increase, and thus little bond dissociation, making it the least sensitive direction. The reaction sensitivity of the slip system is suggested to be significantly related to the intermolecular contacts on the two sides of the slip plane (i.e., steric hindrance) and the reaction activity of contacted atoms or groups. Directions with large steric hindrance and high reaction activity lead to high reaction sensitivity, whereas directions with small steric hindrance or low reaction activity result in low reaction sensitivity. The slip system with relatively high chemical reaction sensitivity is suggested to be associated with the origin of“hot spots”in energetic single crystals. This study provides theoretical support for developing a more reasonable and reliable sensitivity evaluation method for high explosives.

  • 加载中
    1. [1]

      (1) Klapötke, T. M.; Krumm, B.; Ilg, R.; Troegel, D.; Tacke, R. J. Am. Chem. Soc. 2007, 129, 6908. doi: 10.1021/ja071299p

    2. [2]

      (2) Lukasavage,W.; Nicolich, S.; Alster, J. Process of Making Impact Insensitive Alpha-HMX. United States Patent 5268469, 1993.

    3. [3]

      (3) Asay, B.W.; Henson, B. F.; Smilowitz, L. B.; Dickson, P. M. Journal of Energetic Materials 2003, 21, 223. doi: 10.1080/713770434

    4. [4]

      (4) Xiao, H. M.; Zhu,W. H.; Xiao, J. J.;Wang, G. X.; Pei, X. Q. Chinese Journal of Energetic Materials 2012, 20, 514. [肖鹤鸣, 朱卫华, 肖继军, 王桂香, 裴晓琴. 含能材料, 2012, 20, 514.]

    5. [5]

      (5) Mohammad, H. K.; Arash, S.; Karim, E.; Abbas, Z.; Hamid, R. H.; Jamshid, A. Chinese Journal of Energetic Materials 2008, 16, 113. [Mohammad; H. K., Arash; S., Karim; E., Abbas; Z., Hamid; R. H., Jamshid; A. 含能材料, 2008, 16, 113.]

    6. [6]

      (6) Menikoff, R.; Dick, J. J.; Hooks, D. E. Analysis of Wave Profiles for Single Crystal HMX. Los Alamos National Laboratory Report LA-UR-04-3928, 2004.

    7. [7]

      (7) Clements, B. E.; Mas, E. M. Model. Simul. Mater. Sci. Eng. 2004, 12, 407. doi: 10.1088/0965-0393/12/3/004

    8. [8]

      (8) Wu, Y. Q.; Huang, F. L. Sci. China Ser G 2009, 39, 1195. [吴艳青, 黄风雷. 中国科学G辑, 2009, 39, 1195.]

    9. [9]

      (9) Wu, Y. Q.; Huang, F. L. European Journal of Mechanics A/Solids 2012, 36, 66. doi: 10.1016/j.euromechsol.2012.02.011

    10. [10]

      (10) Dick, J. J. Appl. Phys. Lett. 1984, 44, 859. doi: 10.1063/1.94951

    11. [11]

      (11) Dick, J. J.; Mulford, R. N.; Spencer,W. J.; Pettit, D. R.; Garcia, E.; Shaw, D. C. J. Appl. Phys. 1991, 70, 3572. doi: 10.1063/1.349253

    12. [12]

      (12) Dick, J. J.; Ritchie, J. P. J. Appl. Phys. 1994, 76, 2726. doi: 10.1063/1.357576

    13. [13]

      (13) Dick, J. J. J. Appl. Phys. 1997, 81, 601. doi: 10.1063/1.364201

    14. [14]

      (14) Dick, J. J.; Hooks, D. E.; Menikoff, R.; Martinez, A. R. J. Appl. Phys. 2004, 96, 374. doi: 10.1063/1.1757026

    15. [15]

      (15) Menikoff, R.; Dick, J. J.; Hooks, D. E. J. Appl. Phys. 2005, 97, 023529. doi: 10.1063/1.1828602

    16. [16]

      (16) Dick, J. J.; Hooks, D. E.; Menikoff, R. Elastic-PlasticWave Profiles in Cyclotetramethylene Tetranitramine Crystals. Los Alamos National Laboratory Report LA-UR-04-1229, 2004.

    17. [17]

      (17) Jaramillo, E.; Sewell, T. D. Inelastic Deformation in Shock Loaded HMX. Shock and Detonation Physics. Theoretical Division NuclearWeapons Program Highlights. Los Alamos National Laboratory Report LA-UA-06-3716, 2005.

    18. [18]

      (18) Yoo, C. S.; Holmes, N. C.; Souers, P. C.;Wu, C. J.; Ree, F. H.; Dick, J. J. J. Appl. Phys. 2000, 88, 70. doi: 10.1063/1.373626

    19. [19]

      (19) West, A. R. Solid State Chemistry and Its Applications; John Wiley & Sons: New York, 1984; p 666.

    20. [20]

      (20) Jindal, V. K.; Dlott, D. D. J. Appl. Phys. 1998, 83, 5203. doi: 10.1063/1.367340

    21. [21]

      (21) Gruzdkov, Y. A.; Gupta, Y. M. J. Phys. Chem. A 2000, 104, 11169. doi: 10.1021/jp0019613

    22. [22]

      (22) Conroy, M.W.; Oleynik, I. I.; Zybin, S. V.; White, C. T. J. Appl. Phys. 2008, 104, 053506. doi: 10.1063/1.2973689

    23. [23]

      (23) Conroy, M.; Oleynik, I. I.; Zybin, S.V.; White, C. T. Phys. Rev. B 2008, 77, 094107. doi: 10.1103/PhysRevB.77.094107

    24. [24]

      (24) Conroy, M.; Oleynik, I. I.; Zybin, S.V.; White, C. T. Anisotropic Constitutive Relationships in Energetic Materials: PETN AND HMX. In Shock Compression of Condensed Matter-2007; Elert, M., Furnish, M. D., Cliau, R., Holmes, N., Nguyen, J. Eds.; American Institute of Pliysics: College Park, MD, 2007; p 361.

    25. [25]

      (25) Zybin, S. V.; ddard,W. A., III; Xu, P.; van Duin, A. C. T.; Thompson, A. P. Appl. Phys. Lett. 2010, 96, 081918. doi: 10.1063/1.3323103

    26. [26]

      (26) An, Q.; Liu, Y.; Zybin, S. V.; Kim, H.; ddard,W. A., III. J. Phys. Chem. C 2012, 116, 10198. doi: 10.1021/jp300711m

    27. [27]

      (27) Zhou, T. T.; Zybin, S. V.; Liu, Y.; Huang, F. L.; ddard,W. A., III. J. Appl. Phys. 2012, 111, 124904. doi: 10.1063/1.4729114

    28. [28]

      (28) van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; ddard,W. A., III. J. Phys. Chem. A 2001, 105, 9396. doi: 10.1021/jp004368u

    29. [29]

      (29) Zhou, T. T.; Shi, Y. D.; Huang, F. L. Acta Phys. -Chim. Sin. 2012, 28, 2605. [周婷婷, 石一丁, 黄风雷. 物理化学学报, 2012, 28, 2605.] doi: 10.3866/PKU.WHXB201208031

    30. [30]

      (30) Strachan, A.; van Duin, A. C. T.; Dasgupta, S.; Chakraborty, D.; ddard,W. A., III. Phys. Rev. Lett. 2003, 91, 098301. doi: 10.1103/PhysRevLett.91.098301

    31. [31]

      (31) Nomura, K.; Kalia, R. K.; Nakano, A.; Vashishta, P. Appl. Phys. Lett. 2007, 91, 183109. doi: 10.1063/1.2804557

    32. [32]

      (32) An, Q.; Zybin, S. V.; ddard,W. A., III; Botero, A. J.; Blanco, M.; Luo, S. N. Phys. Rev. B 2011, 84, 220101. doi: 10.1103/PhysRevB.84.220101

    33. [33]

      (33) An, Q.; ddard,W. A., III; Zybin, S. V.; Botero, A. J.; Zhou, T. T. J. Phys. Chem. C 2013, 117, 26551. doi: 10.1021/jp404753v

    34. [34]

      (34) Liu, L. C.; Liu, Y.; Zybin, S. V.; ddard,W. A., III. J. Phys. Chem. A 2011, 115, 11016. doi: 10.1021/jp201599t

    35. [35]

      (35) Wang, Y. N.; Chen, S. J.; Dong, X. C. Dislocation Theory and Its Application; Metallurgical Industry Press: Beijing, 2007. [王亚男, 陈树江, 董希淳. 位错理论及其应用. 北京: 冶金工业出版社, 2007.]

    36. [36]

      (36) Wu, D. M. Fundamentals of Solid State Physics; Higher Education Press: Beijing, 2007. [吴代鸣. 固体物理基础. 北京: 高等教育出版社, 2007.]

    37. [37]

      (37) http://www.ccdc.cam.ac.uk/Solutions/CSDSystem/Pages/Mercury.aspx (accessed March 8, 2014).

    38. [38]

      (38) An, Q.; Liu, Y.; Zybin, S. V.; Kim, H. J.; ddard,W. A., III. J. Phys. Chem. C 2012, 116, 10198. doi: 10.1021/jp300711m

    39. [39]

      (39) Zhang, L.; Zybin, S. V.; van Duin, A. C. T.; Dasgupta, S.; ddard,W. A., III; Kober, E. M. J. Phys. Chem. A 2009, 113, 10619.

    40. [40]

      (40) Zhou, T. T.; Song, H. J.; Liu, Y.; Huang, F. L. Phys. Chem. Chem. Phys. 2014, 16, 13914. doi: 10.1039/c4cp00890a

    41. [41]

      (41) Kuklja, M. M.; Stefanovich, E. V.; Kunz, A. B. J. Chem. Phys. 2000, 112, 3417. doi: 10.1063/1.480922

    42. [42]

      (42) Kuklja, M. M.; Aduev, B. P.; Aluker, E. D.; Krasheninin, V. I.; Krechetov, A. G.; Mitrofanov, A. Y. J. Appl. Phys. 2001, 89, 4156. doi: 10.1063/1.1350631

    43. [43]

      (43) Sharia, O.; Kuklja, M. M. J. Phys. Chem. B 2011, 115, 12677.


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    16. [16]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    20. [20]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

Metrics
  • PDF Downloads(398)
  • Abstract views(804)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return