Citation: LIU Su-Qin, WANG Song, DAI Gao-Peng, LU Jun, LIU Ke. Enhanced Visible-Light Photocatalytic Activity and Stability of Nano-Sized Ag2CO3 Combined with Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2121-2126. doi: 10.3866/PKU.WHXB201409191 shu

Enhanced Visible-Light Photocatalytic Activity and Stability of Nano-Sized Ag2CO3 Combined with Carbon Nanotubes

  • Received Date: 17 June 2014
    Available Online: 19 September 2014

    Fund Project: 国家自然科学基金(51378183) (51378183) 湖北省自然科学基金(2012FFB1903) (2012FFB1903) 湖北省教育厅项目(Q20132608) (Q20132608) 襄阳市科技局项目及湖北省低维光电材料与器件重点实验室开放基金(13XKL02013)资助 (13XKL02013)

  • Nano-sized Ag2CO3 and carbon nanotube (CNT) composites were fabricated by a facile chemical precipitation approach in N,N-dimethylformamide (DMF) solvent. The as-prepared Ag2CO3/CNT samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and ultra violet-visible (UV-Vis) diffuse reflectance spectroscopy (DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results showed that the nano-sizedAg2CO3 particles and CNTs were well combined. The Ag2CO3/CNT composite with CNT content of 1.5%(w) exhibited optimal photocatalytic activity under visible light. Ninetythree percent of the MO was removed by the Ag2CO3/CNT composite within 60 min. For the Ag2CO3/CNT composites, we found that the incorporation of CNT improved the structural stability of Ag2CO3 compared with Ag2CO3. After three cycles, 81% of the MO was decomposed by the Ag2CO3/CNT composite with CNT content of 1.5% (w), but only 59.5% of the MO could be removed by Ag2CO3. The improvements in the activity and stability are attributed to the conductive structure supported by CNTs, which favors electron-hole separation and the removal of photogenerated electrons from the decorated Ag2CO3.

  • 加载中
    1. [1]

      (1) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemann, D.W. Chem. Rev. 1995, 95, 69. doi: 10.1021/cr00033a004

    2. [2]

      (2) Chong, M. N.; Jin, B.; Chow, C.W. K.; Saint, C. Water Res. 2010, 44, 2997. doi: 10.1016/j.watres.2010.02.039

    3. [3]

      (3) Yu, C. L.; Cao, F. F.; Shu, Q.; Bao, Y. L.; Xie, Z. P.; Yu, J. C.; Yang, K. Acta Phys. -Chim. Sin. 2012, 28, 647. [余长林,操芳芳, 舒庆, 包玉龙, 谢志鹏, Yu, J. C., 杨凯. 物理化学学报, 2012, 28, 647.] doi: 10.3866/PKU.WHXB201201051

    4. [4]

      (4) Hu, X. X.; Hu, C.; Qu, J. H. Mater. Res. Bull. 2008, 43, 2986. doi: 10.1016/j.materresbull.2007.11.022

    5. [5]

      (5) Singh, J.; Uma, S. J. Phys. Chem. C 2009, 113, 12483. doi: 10.1021/jp901729v

    6. [6]

      (6) Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.;Wei, J. Y.; Whangbo, M. H. Angew. Chem. Int. Edit. 2008, 47, 7931. doi: 10.1002/anie.v47:41

    7. [7]

      (7) Wang, P.; Huang, B. B.; Zhang, X. Y.; Qin, X. Y.; Jin, H.; Dai, Y.;Wang, Z. Y;Wei, J. Y.; Zhan, J.;Wang, S. Y.;Wang, J. P.; Whangbo, M. H. Chem. Eur. J. 2009, 15, 1821. doi: 10.1002/chem.v15:8

    8. [8]

      (8) Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo,W. J.; Li, Z. S.; Liu, Y.; Withers, R. L. Nat. Mater. 2010, 9, 559. doi: 10.1038/nmat2780

    9. [9]

      (9) Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. J. Am. Chem. Soc. 2011, 133, 6490. doi: 10.1021/ja2002132

    10. [10]

      (10) Xu, C.W.; Liu, Y. Y.; Huang, B. B.; Li, H.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Appl. Surf. Sci. 2011, 257, 8732. doi: 10.1016/j.apsusc.2011.05.060

    11. [11]

      (11) Dong, H. J.; Chen, G.; Sun, J. X.; Li, C. M.; Yu, Y. G.; Chen, D. H. Appl. Catal. B: Environ. 2013, 134 -135, 46.

    12. [12]

      (12) Yu, C. L.; Li, G.; Kumar, S.; Yang, K.; Jin, R. C. Adv. Mater. 2014, 26, 892. doi: 10.1002/adma.v26.6

    13. [13]

      (13) Dai, G. P.; Yu, J. G.; Liu, G. J. Phys. Chem. C 2012, 116, 15519. doi: 10.1021/jp305669f

    14. [14]

      (14) Xu, H.; Zhu, J. X.; Song, Y. X.; Zhao,W. K.; Xu, Y. G.; Song, Y. H.; Ji, H. Y.; Li, H. M. RSC Adv. 2014, 4, 9139. doi: 10.1039/c3ra46111d

    15. [15]

      (15) Dong, H. J.; Chen, G.; Sun, J. X.; Feng, Y. J.; Li, C. M.; Xiong, G. H.; Lv, C. D. Dalton Trans. 2014, 43, 7282. doi: 10.1039/c4dt00058g

    16. [16]

      (16) Feng, C. X.; Li, G. G.; Ren, P. H.;Wang, Y.; Huang, X. S.; Li, D. L. Appl. Catal. B: Environ. 2014, 158 -159, 224.

    17. [17]

      (17) Zhang,W. D.; Xu, B.; Jiang, L. C. J. Mater. Chem. 2010, 20, 6383. doi: 10.1039/b926341a

    18. [18]

      (18) Woan, K.; Pyrgiotakis, G.; Sigmund,W. Adv. Mater. 2009, 21, 2233. doi: 10.1002/adma.v21:21

    19. [19]

      (19) Yu, J. G.; Ma, T. T.; Liu, S.W. Phys. Chem. Chem. Phys. 2011, 13, 3491.

    20. [20]

      (20) Wang, S.; Shi, X. L.; Shao, G. Q.; Duan, X. L.; Yang, H.;Wang, T. G. J. Phys. Chem. Solids 2008, 69, 2396. doi: 10.1016/j.jpcs.2008.04.029

    21. [21]

      (21) Ma, L. L.; Sun, H. Z.; Zhang, Y. G.; Lin, Y. L.; Li, J. L.; Yu, K.; Yu, Y.; Tan, M.;Wang, J. B. Nanotechnology 2008, 19, 115709. doi: 10.1088/0957-4484/19/11/115709

    22. [22]

      (22) Xie, S. L.; Lu, X. H.; Zhai, T.; Li,W.; Yu, M. H.; Liang, C. L.; Tong, Y. X. J. Mater. Chem. 2012, 22, 14272. doi: 10.1039/c2jm32605a

    23. [23]

      (23) Xu, H.;Wang, C.; Song, Y. H.; Zhu, J. X.; Xu, Y. G.; Yan, J.; Song, Y. X.; Li, H. M. Chem. Eng. J. 2014, 241, 35. doi: 10.1016/j.cej.2013.11.065

    24. [24]

      (24) Wang, Z.; Yin, L.; Zhang, M.; Zhou, G.W.; Fei, H.; Shi, H. X.; Dai, H. J. J. Mater. Sci. 2014, 49, 1585. doi: 10.1007/s10853-013-7841-4

    25. [25]

      (25) Wang, S. M.; Li, D. L.; Sun, C.; Yang, S. G.; Guan, Y.; He, H. J. Mol. Catal. A: Chem. 2014, 383 -384, 128.

    26. [26]

      (26) Peng, C.; Snook, G. A.; Fray, D. J.; Shaffer, M. S. P.; Chen, G. Z. Chem. Commun. 2006, 4629.

    27. [27]

      (27) Yin, S.; Aita, Y.; Komatsu, M.;Wang, J.; Tang, Q.; Sato, T. J. Mater. Chem. 2005, 15, 674. doi: 10.1039/b413377c

    28. [28]

      (28) Xu, Y. G.; Xu, H.; Yan, J.; Li, H. M.; Huang, L. Y.; Zhang, Q.; Huang, C. J.;Wan, H. L. Phys. Chem. Chem. Phys. 2013, 15, 5821. doi: 10.1039/c3cp44104k

    29. [29]

      (29) Romanov, V.; Siu, C. K.; Verkerk, U. H.; Hopkinson, A. C.; Siu, K.W. M. J. Phys. Chem. A 2010, 114, 6964. doi: 10.1021/jp102470x

    30. [30]

      (30) Dong, P. Y.;Wang, Y. H.; Cao, B. C.; Xin, S. Y.; Guo, L. N.; Zhang, J.; Li, F. H. Appl. Catal. B: Environ. 2013, 132 -133, 45.

    31. [31]

      (31) Xiang, Q. J.; Yu, J. G. Chin. J. Catal. 2011, 32, 525. [向全军, 余家国. 催化学报, 2011, 32, 525.] doi: 10.1016/S1872-2067(10)60186-6

    32. [32]

      (32) Martis, P.; Venu pal, B. R.; Seffer, J. F.; Delhalle, J.; Mekhalif, Z. Acta Mater. 2011, 59, 5040. doi: 10.1016/j.actamat.2011.04.061

    33. [33]

      (33) Song, Y. X.; Zhu, J. X.; Xu, H.;Wang, C.; Xu, Y. G.; Ji, H. Y.; Wang, K.; Zhang, Q.; Li, H. M. J. Alloy. Compd. 2014, 592, 258. doi: 10.1016/j.jallcom.2013.12.228


  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    3. [3]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    15. [15]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    16. [16]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    18. [18]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(467)
  • Abstract views(570)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return