Citation: LIU Su-Qin, WANG Song, DAI Gao-Peng, LU Jun, LIU Ke. Enhanced Visible-Light Photocatalytic Activity and Stability of Nano-Sized Ag2CO3 Combined with Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2121-2126. doi: 10.3866/PKU.WHXB201409191
-
Nano-sized Ag2CO3 and carbon nanotube (CNT) composites were fabricated by a facile chemical precipitation approach in N,N-dimethylformamide (DMF) solvent. The as-prepared Ag2CO3/CNT samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and ultra violet-visible (UV-Vis) diffuse reflectance spectroscopy (DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results showed that the nano-sizedAg2CO3 particles and CNTs were well combined. The Ag2CO3/CNT composite with CNT content of 1.5%(w) exhibited optimal photocatalytic activity under visible light. Ninetythree percent of the MO was removed by the Ag2CO3/CNT composite within 60 min. For the Ag2CO3/CNT composites, we found that the incorporation of CNT improved the structural stability of Ag2CO3 compared with Ag2CO3. After three cycles, 81% of the MO was decomposed by the Ag2CO3/CNT composite with CNT content of 1.5% (w), but only 59.5% of the MO could be removed by Ag2CO3. The improvements in the activity and stability are attributed to the conductive structure supported by CNTs, which favors electron-hole separation and the removal of photogenerated electrons from the decorated Ag2CO3.
-
Keywords:
-
Ag2CO3/CNT composite
, - Photocatalysis,
- Visible light,
- Stability
-
-
-
[1]
(1) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemann, D.W. Chem. Rev. 1995, 95, 69. doi: 10.1021/cr00033a004
-
[2]
(2) Chong, M. N.; Jin, B.; Chow, C.W. K.; Saint, C. Water Res. 2010, 44, 2997. doi: 10.1016/j.watres.2010.02.039
-
[3]
(3) Yu, C. L.; Cao, F. F.; Shu, Q.; Bao, Y. L.; Xie, Z. P.; Yu, J. C.; Yang, K. Acta Phys. -Chim. Sin. 2012, 28, 647. [余长林,操芳芳, 舒庆, 包玉龙, 谢志鹏, Yu, J. C., 杨凯. 物理化学学报, 2012, 28, 647.] doi: 10.3866/PKU.WHXB201201051
-
[4]
(4) Hu, X. X.; Hu, C.; Qu, J. H. Mater. Res. Bull. 2008, 43, 2986. doi: 10.1016/j.materresbull.2007.11.022
-
[5]
(5) Singh, J.; Uma, S. J. Phys. Chem. C 2009, 113, 12483. doi: 10.1021/jp901729v
-
[6]
(6) Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.;Wei, J. Y.; Whangbo, M. H. Angew. Chem. Int. Edit. 2008, 47, 7931. doi: 10.1002/anie.v47:41
-
[7]
(7) Wang, P.; Huang, B. B.; Zhang, X. Y.; Qin, X. Y.; Jin, H.; Dai, Y.;Wang, Z. Y;Wei, J. Y.; Zhan, J.;Wang, S. Y.;Wang, J. P.; Whangbo, M. H. Chem. Eur. J. 2009, 15, 1821. doi: 10.1002/chem.v15:8
-
[8]
(8) Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo,W. J.; Li, Z. S.; Liu, Y.; Withers, R. L. Nat. Mater. 2010, 9, 559. doi: 10.1038/nmat2780
-
[9]
(9) Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. J. Am. Chem. Soc. 2011, 133, 6490. doi: 10.1021/ja2002132
-
[10]
(10) Xu, C.W.; Liu, Y. Y.; Huang, B. B.; Li, H.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Appl. Surf. Sci. 2011, 257, 8732. doi: 10.1016/j.apsusc.2011.05.060
-
[11]
(11) Dong, H. J.; Chen, G.; Sun, J. X.; Li, C. M.; Yu, Y. G.; Chen, D. H. Appl. Catal. B: Environ. 2013, 134 -135, 46.
-
[12]
(12) Yu, C. L.; Li, G.; Kumar, S.; Yang, K.; Jin, R. C. Adv. Mater. 2014, 26, 892. doi: 10.1002/adma.v26.6
-
[13]
(13) Dai, G. P.; Yu, J. G.; Liu, G. J. Phys. Chem. C 2012, 116, 15519. doi: 10.1021/jp305669f
-
[14]
(14) Xu, H.; Zhu, J. X.; Song, Y. X.; Zhao,W. K.; Xu, Y. G.; Song, Y. H.; Ji, H. Y.; Li, H. M. RSC Adv. 2014, 4, 9139. doi: 10.1039/c3ra46111d
-
[15]
(15) Dong, H. J.; Chen, G.; Sun, J. X.; Feng, Y. J.; Li, C. M.; Xiong, G. H.; Lv, C. D. Dalton Trans. 2014, 43, 7282. doi: 10.1039/c4dt00058g
-
[16]
(16) Feng, C. X.; Li, G. G.; Ren, P. H.;Wang, Y.; Huang, X. S.; Li, D. L. Appl. Catal. B: Environ. 2014, 158 -159, 224.
-
[17]
(17) Zhang,W. D.; Xu, B.; Jiang, L. C. J. Mater. Chem. 2010, 20, 6383. doi: 10.1039/b926341a
-
[18]
(18) Woan, K.; Pyrgiotakis, G.; Sigmund,W. Adv. Mater. 2009, 21, 2233. doi: 10.1002/adma.v21:21
-
[19]
(19) Yu, J. G.; Ma, T. T.; Liu, S.W. Phys. Chem. Chem. Phys. 2011, 13, 3491.
-
[20]
(20) Wang, S.; Shi, X. L.; Shao, G. Q.; Duan, X. L.; Yang, H.;Wang, T. G. J. Phys. Chem. Solids 2008, 69, 2396. doi: 10.1016/j.jpcs.2008.04.029
-
[21]
(21) Ma, L. L.; Sun, H. Z.; Zhang, Y. G.; Lin, Y. L.; Li, J. L.; Yu, K.; Yu, Y.; Tan, M.;Wang, J. B. Nanotechnology 2008, 19, 115709. doi: 10.1088/0957-4484/19/11/115709
-
[22]
(22) Xie, S. L.; Lu, X. H.; Zhai, T.; Li,W.; Yu, M. H.; Liang, C. L.; Tong, Y. X. J. Mater. Chem. 2012, 22, 14272. doi: 10.1039/c2jm32605a
-
[23]
(23) Xu, H.;Wang, C.; Song, Y. H.; Zhu, J. X.; Xu, Y. G.; Yan, J.; Song, Y. X.; Li, H. M. Chem. Eng. J. 2014, 241, 35. doi: 10.1016/j.cej.2013.11.065
-
[24]
(24) Wang, Z.; Yin, L.; Zhang, M.; Zhou, G.W.; Fei, H.; Shi, H. X.; Dai, H. J. J. Mater. Sci. 2014, 49, 1585. doi: 10.1007/s10853-013-7841-4
-
[25]
(25) Wang, S. M.; Li, D. L.; Sun, C.; Yang, S. G.; Guan, Y.; He, H. J. Mol. Catal. A: Chem. 2014, 383 -384, 128.
-
[26]
(26) Peng, C.; Snook, G. A.; Fray, D. J.; Shaffer, M. S. P.; Chen, G. Z. Chem. Commun. 2006, 4629.
-
[27]
(27) Yin, S.; Aita, Y.; Komatsu, M.;Wang, J.; Tang, Q.; Sato, T. J. Mater. Chem. 2005, 15, 674. doi: 10.1039/b413377c
-
[28]
(28) Xu, Y. G.; Xu, H.; Yan, J.; Li, H. M.; Huang, L. Y.; Zhang, Q.; Huang, C. J.;Wan, H. L. Phys. Chem. Chem. Phys. 2013, 15, 5821. doi: 10.1039/c3cp44104k
-
[29]
(29) Romanov, V.; Siu, C. K.; Verkerk, U. H.; Hopkinson, A. C.; Siu, K.W. M. J. Phys. Chem. A 2010, 114, 6964. doi: 10.1021/jp102470x
-
[30]
(30) Dong, P. Y.;Wang, Y. H.; Cao, B. C.; Xin, S. Y.; Guo, L. N.; Zhang, J.; Li, F. H. Appl. Catal. B: Environ. 2013, 132 -133, 45.
-
[31]
(31) Xiang, Q. J.; Yu, J. G. Chin. J. Catal. 2011, 32, 525. [向全军, 余家国. 催化学报, 2011, 32, 525.] doi: 10.1016/S1872-2067(10)60186-6
-
[32]
(32) Martis, P.; Venu pal, B. R.; Seffer, J. F.; Delhalle, J.; Mekhalif, Z. Acta Mater. 2011, 59, 5040. doi: 10.1016/j.actamat.2011.04.061
-
[33]
(33) Song, Y. X.; Zhu, J. X.; Xu, H.;Wang, C.; Xu, Y. G.; Ji, H. Y.; Wang, K.; Zhang, Q.; Li, H. M. J. Alloy. Compd. 2014, 592, 258. doi: 10.1016/j.jallcom.2013.12.228
-
[1]
-
-
[1]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[2]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[3]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[4]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[5]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[8]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[9]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[10]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[11]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[12]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[13]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[14]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[15]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[16]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[17]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[18]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[19]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[20]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[1]
Metrics
- PDF Downloads(467)
- Abstract views(532)
- HTML views(7)