Citation:
DING Jun-Jie, DING Xiao-Qin, LI Da-Yu, PAN Li, CHEN Ji-Sheng. Quantitative Structure-Activity Relationship and Virtual Screening of ω-Conotoxins[J]. Acta Physico-Chimica Sinica,
;2014, 30(11): 2157-2167.
doi:
10.3866/PKU.WHXB201409171
-
ω-Conotoxins are active peptides composed of 24-31 amino acids isolated from venomous marine predatory cone snails. ω-Conotoxins selectively inhibit voltage-gated calcium channels (VGCCs) in nociceptors, so are considered attractive molecules for drug design. In this study, based on a set of new amino acid structure descriptors (c-scales) and genetic partial least squares (G/PLS) regression method, quantitative structureactivity relationship (QSAR) models for N-type and P/Q-type VGCC anta nists of ω-conotoxins were developed. Two virtual polypeptide libraries with 2244 peptides were designed and established for N-type and P/Q-type VGCC anta nists, respectively. Then, based on the biological activities predicted from the constructed QSAR models and chemical similarities to the probes MVIIA and MVIIC, the polypeptide libraries were virtually screened. As a result, the established QSAR models had od predictability (cross- validated correlation coefficient CV-r2>0.89). The structural diversity of the libraries was validated using principal component analysis (PCA) and hierarchical cluster analysis (HCA) approaches. Six N-type and nineteen P/Q-type VGCC anta nists with high selectivity and activity were identified by virtual screening. The results of this study will be valuable for finding highly active polypeptide and non-peptide mimetics. Furthermore, the established polypeptide QSAR models and virtual screening strategy can also be applied to other peptide systems.
-
Keywords:
-
ω-Conotoxin
, - Calcium channel anta nist,
- QSAR,
- Virtual screening
-
-
-
-
[1]
(1) Vink, S.; Alewood, P. Br. J. Pharmacol. 2012, 167, 970. doi: 10.1111/j.1476-5381.2012.02082.x
-
[2]
(2) Schroeder, C. I.; Lewis, R. J. Mar. Drugs 2006, 4, 193. doi: 10.3390/md403193
-
[3]
(3) Tetsuyuki,W.; Junichi, A.; Takeshi, M.; Takashi, M.; Seiji, I. Neurochem. Res. 2003, 28, 705. doi: 10.1023/A:1022805615926
-
[4]
(4) Lewis, R. J.; Dutertre, S.; Vetter, I.; Christie, M. J. Pharmacol. Rev. 2012, 64, 259.
-
[5]
(5) Tetsuyuki,W.; Takashi, I.; Akinori, K.; Masayuki, X. M.; Yasuo, M.; Keiji, I.; Seiji, I. Neurochem. Res. 2005, 30, 1045. doi: 10.1007/s11064-005-7046-6
-
[6]
(6) Obafemi, A.; Roth, B. Pain Med. 2013, 14, 447. doi: 10.1111/pme.2013.14.issue-3
-
[7]
(7) Bourinet, E.; Zamponi, G.W. Curr. Top. Med. Chem. 2005, 5, 539. doi: 10.2174/1568026054367610
-
[8]
(8) Lynch, S. S.; Cheng, C. M.; Yee, J. L. Ann. Pharmacother. 2006, 40, 1293. doi: 10.1345/aph.1G584
-
[9]
(9) Alicino, I.; Giglio, M.; Manca, F.; Bruno, F.; Puntillo, F. Pain 2012, 153, 245. doi: 10.1016/j.pain.2011.10.002
-
[10]
(10) Sanford, M. CNS Drugs 2013, 27, 989. doi: 10.1007/s40263-013-0107-5
-
[11]
(11) Sasaki, T.; Kobayashi, K.; Kohno, T.; Sato, K. FEBS Lett. 2000, 466, 125. doi: 10.1016/S0014-5793(99)01772-X
-
[12]
(12) Wang, C. Z.; Jiang, H.; Qi, Z.W. Prog. Biochem. Biophys. 2003, 30, 537. [王承忠, 蒋辉, 戚正武. 生物化学与生物物理进展, 2003, 30, 537.]
-
[13]
(13) Kolosov, A.; Aurini, L.;Williams, E. D.; Cooke, I.; odchild, C. S. Pain Med. 2011, 12, 923. doi: 10.1111/pme.2011.12.issue-6
-
[14]
(14) Fedosova, A. E.; Moshkovskiic, S. A.; Kuznetsovac, K. G.; Oliverab, B. M. Biochemistry-Moscow+Series B: Biomed. Chem. 2012, 6, 107.
-
[15]
(15) Kolosov, A.; odchild, C. S.; Cooke, I. Pain Med. 2010, 11, 262. doi: 10.1111/pme.2010.11.issue-2
-
[16]
(16) Zhan, D. L;Wang, S.; Han,W.W.; Liu, J. S. Acta Chim. Sin. 2012, 70, 217. [詹冬玲, 王嵩, 韩葳葳, 刘景圣, 化学学报, 2012, 70, 217.] doi: 10.6023/A1108313
-
[17]
(17) Zhang, Q. Q.; Yao, Q. Z.; Zhang, S. P.; Bi, L. M.; Zhou, Z. G.; Zhang, J. Acta Phys. -Chim. Sin. 2014, 30, 371. [张青青, 姚其正, 张生平, 毕乐明, 周之光, 张骥. 物理化学学报, 2014, 30, 371.] doi: 10.3866/PKU.WHXB201312192
-
[18]
(18) Hou, T. J.; Xu, X. J. Curr. Pharm. Des. 2004, 10, 1011. doi: 10.2174/1381612043452721
-
[19]
(19) Ding, J. J.; Ding, X. Q.; Zhao, L. F.; Chen, J. S. Prog. Chem. 2005, 17, 130. [丁俊杰, 丁晓琴, 赵立峰, 陈冀胜. 化学进展, 2005, 17, 130.]
-
[20]
(20) Audie, J.; Swanson, J. Chem. Biol. Drug. Des. 2013, 81, 50. doi: 10.1111/cbdd.2012.81.issue-1
-
[21]
(21) Hou, T. J.; Li, N.; Li, Y. Y.;Wang,W. J. Proteome Res. 2012, 11, 2982. doi: 10.1021/pr3000688
-
[22]
(22) Hou, T. J.; Li, Y. Y.;Wang,W. Bioinformatics 2011, 27, 1814. doi: 10.1093/bioinformatics/btr294
-
[23]
(23) Hou, T. J.; Xu, Z.; Zhang,W.; McLaughlin,W. A.; Case, D. A.; Xu, Y.;Wang,W. Mol. Cell. Proteomics 2009, 8, 639. doi: 10.1074/mcp.M800450-MCP200
-
[24]
(24) Ding, J. J.; Ding, X. Q.; Zhao, L. F.; Chen, J. S. Acta Pharm. Sin. 2005, 40, 340. [丁俊杰, 丁晓琴, 赵立峰, 陈冀胜. 药学学报, 2005, 40, 340.]
-
[25]
(25) Atkinson, R. A.; Kieffer, B.; Dejaegere, A.; Sirockin, F.; Lefevre, J. F. Biochemistry 2000, 39, 3908. doi: 10.1021/bi992651h
-
[26]
(26) Nielsen, K. J.; Adams, D.; Thomas, L.; Bond, T.; Alewood, P. F.; Craik, D. J.; Lewis, R. J. J. Mol. Biol. 1999, 289, 1405. doi: 10.1006/jmbi.1999.2817
-
[27]
(27) Richard, J. L.; Katherine, J. N.; David, J. C.; Marion, L. L.; Denise, A. A.; Iain, A. S.; Tudor, L.; David, J. A.; Trudy, B.; Linda, T.; Aluu, J.; Jodi-Lea, M.; Roger, D.; Peter, R. A.; Paul, F. A. J. Biol. Chem. 2000, 275, 35335. doi: 10.1074/jbc.M002252200
-
[28]
(28) Mason, J. S. Computer-Assisted Drug Design; Science Press: Beijing, 2007; p 307.
-
[29]
(29) Cerius 2 User Guide; Molecular Simulations Inc: San Die , 2000.
-
[30]
(30) Drwal, M. N.; Griffith, R. Drug Discovery Today: Technologies 2013, 10, e395.
-
[31]
(31) Wilson, G. L.; Lill, M. A. Future Med. Chem. 2011, 3, 735. doi: 10.4155/fmc.11.18
-
[32]
(32) G rge, P. M.; Ramachandran, J. Annu. Rev. Pharmacol. Toxicol. 1995, 35, 307. doi: 10.1146/annurev.pa.35.040195.001515
-
[33]
(33) Pallaghy, P. K.; Nielsen, K. J.; Craik, D. J.; Norton, R. S. Protein Sci. 1994, 3, 1833. doi: 10.1002/pro.v3:10
-
[34]
(34) Adams, D. J.; Berecki, G. Biochim. Biophys. Acta 2013, 1828, 1619. doi: 10.1016/j.bbamem.2013.01.019
-
[35]
(35) Kazuki, S.; Cecile, R.; Nicole, M. M.; Toru, S.; Akira, O.; Atsuko, O.; Jae, I. K.; Toshiyuki, K.; Masami, T.; Michael, S. FEBS Lett. 1997, 414, 480. doi: 10.1016/S0014-5793(97)01056-9
-
[36]
(36) Nielsen, K. J.; Adams, D. A.; Alewood, P. F.; Lewis, R. J.; Thomas, L.; Schroeder, T.; Craik, D. J. Biochemistry 1999, 38, 6741. doi: 10.1021/bi982980u
-
[37]
(37) Mould, J.; Yasuda, T.; Schroeder, C. I.; Beedle, A. M.; Doering, C. J.; Zamponi, G.W.; Adams, D. J.; Lewis, R. J. J. Biol. Chem. 2004, 279, 34705.
-
[38]
(38) Van Petegem, F.; Minor, D. L. Biochem. Soc. Trans. 2006, 34, 887. doi: 10.1042/BST0340887
-
[39]
(39) Kajuti, S.; Cecile, R.; Nicole, M. M.; Toru. S.; Atsuko, O. FEBS Lett. 2000, 469, 147. doi: 10.1016/S0014-5793(00)01263-1
-
[40]
(40) Kazuki, S.; Cecile, R.; Nicole, M. M.; Toru, S.; Atsuko, O.; Kazushi, M.; Catherine, V. R.; Masami, T.; Michael, J. S. Biochem. Biophys. Res. Commun. 2000, 269, 254. doi: 10.1006/bbrc.2000.2284
-
[41]
(41) Lew, M. J.; Flinn, J. P.; Pallaghy, P. K.; Murphy, R.; Whorlow, S. L.;Wright, C. E.; Norton, R. S.; Angus, J. A. J. Biol. Chem. 1997, 272, 12014. doi: 10.1074/jbc.272.18.12014
-
[42]
(42) Nadasdi, L.; Yamashiro, D.; Chung, D.; Tarczy-Hornoch, K.; Adriaenssens, P.; Ramachandran, J. Biochemistry 1995, 34, 8076. doi: 10.1021/bi00025a013
-
[1]
-
-
-
[1]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[2]
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
-
[3]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[4]
Dongxue Han , Huiliang Sun , Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055
-
[5]
Yuyang Xu , Ruying Yang , Yanzhe Zhang , Yandong Liu , Keyi Li , Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064
-
[6]
Hui Liu , Shupeng Zhang , Yuntian Zhang , Wei Dong , Yuji Liu , Bingxin Deng , Dongping Chen , Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028
-
[7]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[8]
Xiaoyan Wang , Chao Wang , Dongmei Dai , Yanling Geng , Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074
-
[9]
Hui Xiong , Yan Wang , Rongxian Bai , Yongqi Wu , Chengmei Liu , Yuefa Gong , Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071
-
[10]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[11]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[12]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[13]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[14]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[15]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[16]
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045
-
[17]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[18]
Guoze Yan , Bin Zuo , Shaoqing Liu , Tao Wang , Ruoyu Wang , Jinyang Bao , Zhongzhou Zhao , Feifei Chu , Zhengtong Li , Yusuke Yamauchi , Saad Melhi , Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006
-
[19]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[20]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[1]
Metrics
- PDF Downloads(279)
- Abstract views(526)
- HTML views(12)