Citation:
WANG Jian-De, PENG Tong-Jiang, SUN Hong-Juan, HOU Yun-Dan. Effect of the Hydrothermal Reaction Temperature on Three-Dimensional Reduced Graphene Oxide's Appearance, Structure and Super Capacitor Performance[J]. Acta Physico-Chimica Sinica,
;2014, 30(11): 2077-2084.
doi:
10.3866/PKU.WHXB201409152
-
Three-dimensional reduction of graphene oxide with a series of different degrees of reduction was performed by the hydrothermal method in the temperature range from 120 to 220 ℃, with graphene oxide sols as the precursor and prepared by graphite oxide gels. The effect of the temperature of the hydrothermal reaction on the materials appearance, structure, and super capacitor performance was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. The results show that the prepared three dimensional reduction of graphene oxide was porous and reticulated, and its volume and inner mesh aperture gradually decreased with increasing temperature, while its degree of reduction and order increased at the same time, and its structure gradually transformed to the graphite oxide structure. However, thematerials' specific capacitance and energy density showed the tendency of first increasing and then decreasing, with the electric double-layer capacitor mainly remaining. The three-dimensional reduction of graphene oxide materials at 180 ℃ resulted in the best super capacitor performance, with a specific capacitance of 315 F·g-1 when the current density was 0.5 A·g-1 and 212 F·g-1 when the current density was 10 A·g-1. Its energy density was 40.5 Wh·kg-1 and its specific capacitance was 86% after 5000 cycles, with all these properties indicating its od super capacitor performance.
-
-
-
[1]
(1) Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143 (11), 3791. doi: 10.1149/1.1837291
-
[2]
(2) Arbizzani, C.; Mastra stino, M.; Soavi, F. J. Power Sources 2001, 100 (1), 164.
-
[3]
(3) Zheng, J. P.; Jow, T. R. J. Power Sources 1996, 62 (2), 155. doi: 10.1016/S0378-7753(96)02424-X
-
[4]
(4) Zheng, J. P.; Jow, T. R. J. Electrochem. Soc. 1995, 142 (1), L6.
-
[5]
(5) Frackowiak, E. Phys. Chem. Chem. Phys. 2007, 9 (15), 1774.
-
[6]
(6) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.; Ferreira, P. J.; Ruoff, R. S. Science 2011, 332 (6037), 1537. doi: 10.1126/science.1200770
-
[7]
(7) Liu, D.; Shen, J.; Li, Y. J.; Liu, N. P.; Liu, B. Acta Phys. -Chim. Sin. 2012, 28 (4), 843. [刘冬, 沈军, 李亚捷, 刘念平, 刘斌. 物理化学学报, 2012, 28 (4), 843.] doi: 10.3866/PKU.WHXB201202172
-
[8]
(8) Lei, Y.; Li, J.;Wang, Y.; Gu, L.; Chang, Y.; Yuan, H.; Xiao, D. ACS Appl. Mat. Interfaces 2014, 6 (3), 1773. doi: 10.1021/am404765y
-
[9]
(9) Chen, L.; Li, B.; Qi, Z.; Guo, H.; Zhou, J.; Li, L. J. Electron. Mater. 2013, 42 (10), 2933.
-
[10]
(10) Jin, Y.; Chen, H. Y.; Chen, M. H.; Liu, N.; Li, Q.W. Acta Phys. -Chim. Sin. 2012, 28 (3), 609. [靳瑜, 陈宏源, 陈名海, 刘宁, 李清文. 物理化学学报, 2012, 28 (3), 609.] doi: 10.3866/PKU.WHXB201201162
-
[11]
(11) Ma, J.; Liu, Y.; Hu, Z.; Xu, Z. Solid State Ionics 2013, 19 (10), 1405.
-
[12]
(12) Mao, L.; Zhang, K.; Chan, H. S. O.;Wu, J. J. Mater. Chem. 2012, 22 (5), 1845. doi: 10.1039/c1jm14503g
-
[13]
(13) Sun, X. Z.; Zhang, X.; Zhang, D. C.; Ma, Y.W. Acta Phys. -Chim. Sin. 2012, 28 (2), 367. [孙现众, 张熊, 张大成, 马衍伟. 物理化学学报, 2012, 28 (2), 367.] doi: 10.3866/PKU.WHXB201112131
-
[14]
(14) Che, Q.; Zhang, F.; Zhang, X. G.; Lu, X. J.; Ding, B.; Zhu, J. J. Acta Phys. -Chim. Sin. 2012, 28 (4), 837. [车倩, 张方, 张校刚, 卢向军, 丁兵, 朱佳佳. 物理化学学报, 2012, 28 (4), 837.] doi: 10.3866/PKU.WHXB201202074
-
[15]
(15) Niu, Z. Q.; Liu, L. L.; Zhang, L.; Shao, Q.; Zhou,W. Y.; Chen, X. D.; Xie, S. S. Adv. Mater. 2014, 26 (22), 3681. doi: 10.1002/adma.v26.22
-
[16]
(16) Novoselo, V. K. S.; Geim, A. K.; Morozo, V. S. V. Science 2004, 306, 666. doi: 10.1126/science.1102896
-
[17]
(17) Kane, C. L. Nature 2005, 438 (7065), 168. doi: 10.1038/438168a
-
[18]
(18) Stoller, M. D.; Park, S. J.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8 (10), 3498. doi: 10.1021/nl802558y
-
[19]
(19) Vivekchand, S. R. C.; Rout, C. S.; Subrahmanyam, K. S.; vindaraj, A.; Rao, C. N. R. Chem. Sci. 2008, 120 (1), 9. doi: 10.1007/s12039-008-0002-7
-
[20]
(20) Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.;Wang, C.; Chen, M.; Chen, Y. J. Phys. Chem. C 2009, 113 (30), 13103. doi: 10.1021/jp902214f
-
[21]
(21) Ye, J.; Zhang, H. Y.; Chen, Y. M.; Cheng, Z. D.; Hu, L.; Ran, Q. Y. J. Power Sources 2012, 212, 105. doi: 10.1016/j.jpowsour.2012.03.101
-
[22]
(22) Lv,W.; Tang, D. M.; He, Y. B.; You, C. H.; Shi, Z. Q.; Chen, X. C. ACS Nano 2009, 3 (11), 3730. doi: 10.1021/nn900933u
-
[23]
(23) Shen, B.; Lu, D.; Zhai,W.; Zheng,W. J. Phys. Chem. C 2013, 1 (1), 50.
-
[24]
(24) Xu, Y.; Lin, Z.; Huang, X.;Wang, Y.; Huang, Y.; Duan, X. Adv. Mater. 2013, 25 (40), 5779. doi: 10.1002/adma.v25.40
-
[25]
(25) Bi, H.; Yin, K.; Xie, X.; Zhou, Y.;Wan, N.; Xu, F.; Banhart, F.; Sun, L.; Ruoff, R. S. Adv. Mater. 2012, 24, 5124. doi: 10.1002/adma.201201519
-
[26]
(26) Xu, Y.; Shi, G. J. Mater. Chem. 2011, 21 (10), 3311.
-
[27]
(27) Dreyer, D. R.; Park, S.; Bielawski, C.W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39 (1), 228. doi: 10.1039/b917103g
-
[28]
(28) Thomsen, C.; Reich, S. Phys. Rev. Lett. 2000, 85, 5214. doi: 10.1103/PhysRevLett.85.5214
-
[29]
(29) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2011, 27 (3), 736. [杨勇辉, 孙红娟, 彭同江, 黄桥. 物理化学学报, 2011, 27 (3), 736.] doi: 10.3866/PKU.WHXB20110320
-
[30]
(30) Du, Q.; Zheng, M.; Zhang, L.;Wang, Y.; Chen, J.; Xue, L.; Cao, J. Electrochim. Acta 2010, 55 (12), 3897. doi: 10.1016/j.electacta.2010.01.089
-
[31]
(31) Chen, S.; Zhu, J.;Wu, X.; Han, Q.;Wang, X. ACS Nano 2010, 4 (5), 2822. doi: 10.1021/nn901311t
-
[32]
(32) Mao, Lu.; Zhang, K.; Chan, H. S. O.;Wu, J. S. J. Mater. Chem. 2012, 22, 1845. doi: 10.1039/c1jm14503g
-
[33]
(33) Simon, P.; tsi, Y. Nat. Mater. 2008, 7 (11), 845.
-
[34]
(34) Wu, X. L.;Wang,W.; Guo, Y. G.;Wan, L. J.; Nanosci, J. Nano Technol. 2011, 11 (3), 1897.
-
[35]
(35) Polat, E. O.; Kocabas, C. Nano Lett. 2013, 13 (12), 5851. doi: 10.1021/nl402616t
-
[1]
-
-
-
[1]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[2]
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063
-
[3]
Yijing GU , Huan PANG , Rongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186
-
[4]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[5]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[6]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009
-
[7]
Shuting Zhuang , Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010
-
[8]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[9]
Huimin Liu , Kezhi Li , Xin Zhang , Xuemin Yin , Qiangang Fu , Hejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026
-
[10]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[11]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[12]
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
-
[13]
Feng Lin , Zhongxin Jin , Caiying Li , Cheng Shao , Yang Xu , Fangze Li , Siqi Liu , Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017
-
[14]
Jing Zhang , Su Zhang , Qiqi Li , Linken Ji , Yutong Li , Yukang Ren , Xiaobei Zang , Ning Cao , Han Hu , Peng Liang , Zhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114
-
[15]
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066
-
[16]
Yingtong FAN , Yujin YAO , Shouhao WAN , Yihang SHEN , Xiang GAO , Cuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043
-
[17]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[18]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[19]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[20]
Qing Xue , Shengyi Li , Yanan Zhao , Peng Sheng , Li Xu , Zhengxi Li , Bo Zhang , Hui Li , Bo Wang , Libin Yang , Yuliang Cao , Zhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041
-
[1]
Metrics
- PDF Downloads(846)
- Abstract views(1533)
- HTML views(143)