Citation:
WANG Jian-De, PENG Tong-Jiang, SUN Hong-Juan, HOU Yun-Dan. Effect of the Hydrothermal Reaction Temperature on Three-Dimensional Reduced Graphene Oxide's Appearance, Structure and Super Capacitor Performance[J]. Acta Physico-Chimica Sinica,
;2014, 30(11): 2077-2084.
doi:
10.3866/PKU.WHXB201409152
-
Three-dimensional reduction of graphene oxide with a series of different degrees of reduction was performed by the hydrothermal method in the temperature range from 120 to 220 ℃, with graphene oxide sols as the precursor and prepared by graphite oxide gels. The effect of the temperature of the hydrothermal reaction on the materials appearance, structure, and super capacitor performance was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. The results show that the prepared three dimensional reduction of graphene oxide was porous and reticulated, and its volume and inner mesh aperture gradually decreased with increasing temperature, while its degree of reduction and order increased at the same time, and its structure gradually transformed to the graphite oxide structure. However, thematerials' specific capacitance and energy density showed the tendency of first increasing and then decreasing, with the electric double-layer capacitor mainly remaining. The three-dimensional reduction of graphene oxide materials at 180 ℃ resulted in the best super capacitor performance, with a specific capacitance of 315 F·g-1 when the current density was 0.5 A·g-1 and 212 F·g-1 when the current density was 10 A·g-1. Its energy density was 40.5 Wh·kg-1 and its specific capacitance was 86% after 5000 cycles, with all these properties indicating its od super capacitor performance.
-
-
-
[1]
(1) Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143 (11), 3791. doi: 10.1149/1.1837291
-
[2]
(2) Arbizzani, C.; Mastra stino, M.; Soavi, F. J. Power Sources 2001, 100 (1), 164.
-
[3]
(3) Zheng, J. P.; Jow, T. R. J. Power Sources 1996, 62 (2), 155. doi: 10.1016/S0378-7753(96)02424-X
-
[4]
(4) Zheng, J. P.; Jow, T. R. J. Electrochem. Soc. 1995, 142 (1), L6.
-
[5]
(5) Frackowiak, E. Phys. Chem. Chem. Phys. 2007, 9 (15), 1774.
-
[6]
(6) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.; Ferreira, P. J.; Ruoff, R. S. Science 2011, 332 (6037), 1537. doi: 10.1126/science.1200770
-
[7]
(7) Liu, D.; Shen, J.; Li, Y. J.; Liu, N. P.; Liu, B. Acta Phys. -Chim. Sin. 2012, 28 (4), 843. [刘冬, 沈军, 李亚捷, 刘念平, 刘斌. 物理化学学报, 2012, 28 (4), 843.] doi: 10.3866/PKU.WHXB201202172
-
[8]
(8) Lei, Y.; Li, J.;Wang, Y.; Gu, L.; Chang, Y.; Yuan, H.; Xiao, D. ACS Appl. Mat. Interfaces 2014, 6 (3), 1773. doi: 10.1021/am404765y
-
[9]
(9) Chen, L.; Li, B.; Qi, Z.; Guo, H.; Zhou, J.; Li, L. J. Electron. Mater. 2013, 42 (10), 2933.
-
[10]
(10) Jin, Y.; Chen, H. Y.; Chen, M. H.; Liu, N.; Li, Q.W. Acta Phys. -Chim. Sin. 2012, 28 (3), 609. [靳瑜, 陈宏源, 陈名海, 刘宁, 李清文. 物理化学学报, 2012, 28 (3), 609.] doi: 10.3866/PKU.WHXB201201162
-
[11]
(11) Ma, J.; Liu, Y.; Hu, Z.; Xu, Z. Solid State Ionics 2013, 19 (10), 1405.
-
[12]
(12) Mao, L.; Zhang, K.; Chan, H. S. O.;Wu, J. J. Mater. Chem. 2012, 22 (5), 1845. doi: 10.1039/c1jm14503g
-
[13]
(13) Sun, X. Z.; Zhang, X.; Zhang, D. C.; Ma, Y.W. Acta Phys. -Chim. Sin. 2012, 28 (2), 367. [孙现众, 张熊, 张大成, 马衍伟. 物理化学学报, 2012, 28 (2), 367.] doi: 10.3866/PKU.WHXB201112131
-
[14]
(14) Che, Q.; Zhang, F.; Zhang, X. G.; Lu, X. J.; Ding, B.; Zhu, J. J. Acta Phys. -Chim. Sin. 2012, 28 (4), 837. [车倩, 张方, 张校刚, 卢向军, 丁兵, 朱佳佳. 物理化学学报, 2012, 28 (4), 837.] doi: 10.3866/PKU.WHXB201202074
-
[15]
(15) Niu, Z. Q.; Liu, L. L.; Zhang, L.; Shao, Q.; Zhou,W. Y.; Chen, X. D.; Xie, S. S. Adv. Mater. 2014, 26 (22), 3681. doi: 10.1002/adma.v26.22
-
[16]
(16) Novoselo, V. K. S.; Geim, A. K.; Morozo, V. S. V. Science 2004, 306, 666. doi: 10.1126/science.1102896
-
[17]
(17) Kane, C. L. Nature 2005, 438 (7065), 168. doi: 10.1038/438168a
-
[18]
(18) Stoller, M. D.; Park, S. J.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8 (10), 3498. doi: 10.1021/nl802558y
-
[19]
(19) Vivekchand, S. R. C.; Rout, C. S.; Subrahmanyam, K. S.; vindaraj, A.; Rao, C. N. R. Chem. Sci. 2008, 120 (1), 9. doi: 10.1007/s12039-008-0002-7
-
[20]
(20) Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.;Wang, C.; Chen, M.; Chen, Y. J. Phys. Chem. C 2009, 113 (30), 13103. doi: 10.1021/jp902214f
-
[21]
(21) Ye, J.; Zhang, H. Y.; Chen, Y. M.; Cheng, Z. D.; Hu, L.; Ran, Q. Y. J. Power Sources 2012, 212, 105. doi: 10.1016/j.jpowsour.2012.03.101
-
[22]
(22) Lv,W.; Tang, D. M.; He, Y. B.; You, C. H.; Shi, Z. Q.; Chen, X. C. ACS Nano 2009, 3 (11), 3730. doi: 10.1021/nn900933u
-
[23]
(23) Shen, B.; Lu, D.; Zhai,W.; Zheng,W. J. Phys. Chem. C 2013, 1 (1), 50.
-
[24]
(24) Xu, Y.; Lin, Z.; Huang, X.;Wang, Y.; Huang, Y.; Duan, X. Adv. Mater. 2013, 25 (40), 5779. doi: 10.1002/adma.v25.40
-
[25]
(25) Bi, H.; Yin, K.; Xie, X.; Zhou, Y.;Wan, N.; Xu, F.; Banhart, F.; Sun, L.; Ruoff, R. S. Adv. Mater. 2012, 24, 5124. doi: 10.1002/adma.201201519
-
[26]
(26) Xu, Y.; Shi, G. J. Mater. Chem. 2011, 21 (10), 3311.
-
[27]
(27) Dreyer, D. R.; Park, S.; Bielawski, C.W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39 (1), 228. doi: 10.1039/b917103g
-
[28]
(28) Thomsen, C.; Reich, S. Phys. Rev. Lett. 2000, 85, 5214. doi: 10.1103/PhysRevLett.85.5214
-
[29]
(29) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2011, 27 (3), 736. [杨勇辉, 孙红娟, 彭同江, 黄桥. 物理化学学报, 2011, 27 (3), 736.] doi: 10.3866/PKU.WHXB20110320
-
[30]
(30) Du, Q.; Zheng, M.; Zhang, L.;Wang, Y.; Chen, J.; Xue, L.; Cao, J. Electrochim. Acta 2010, 55 (12), 3897. doi: 10.1016/j.electacta.2010.01.089
-
[31]
(31) Chen, S.; Zhu, J.;Wu, X.; Han, Q.;Wang, X. ACS Nano 2010, 4 (5), 2822. doi: 10.1021/nn901311t
-
[32]
(32) Mao, Lu.; Zhang, K.; Chan, H. S. O.;Wu, J. S. J. Mater. Chem. 2012, 22, 1845. doi: 10.1039/c1jm14503g
-
[33]
(33) Simon, P.; tsi, Y. Nat. Mater. 2008, 7 (11), 845.
-
[34]
(34) Wu, X. L.;Wang,W.; Guo, Y. G.;Wan, L. J.; Nanosci, J. Nano Technol. 2011, 11 (3), 1897.
-
[35]
(35) Polat, E. O.; Kocabas, C. Nano Lett. 2013, 13 (12), 5851. doi: 10.1021/nl402616t
-
[1]
-
-
-
[1]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[2]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[3]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[4]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
-
[5]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[6]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[7]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[8]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[11]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[12]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[13]
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
-
[14]
Guoze Yan , Bin Zuo , Shaoqing Liu , Tao Wang , Ruoyu Wang , Jinyang Bao , Zhongzhou Zhao , Feifei Chu , Zhengtong Li , Yusuke Yamauchi , Saad Melhi , Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006
-
[15]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[16]
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
-
[17]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[18]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[19]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
-
[20]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[1]
Metrics
- PDF Downloads(846)
- Abstract views(1378)
- HTML views(128)