Citation:
SHI Nan, GAO Bao-Jiao, YANG Qing. Adsorption Characteristics of Bovine Serum Albumin on Cationic Grafted Particles QPDMAEMA/SiO2 with Brush Structure[J]. Acta Physico-Chimica Sinica,
;2014, 30(11): 2168-2176.
doi:
10.3866/PKU.WHXB201409151
-
Cationic grafted particles with a brush structure were prepared with micron-sized silica gel particles as a matrix via graft-polymerization and macromolecular reaction. The adsorption ability, adsorption mechanism, and adsorption thermodynamics of bovine serum albumin (BSA) on the particles were investigated in depth. The tertiary amine group-containing monomer (dimethylaminoethyl methacrylate, DMAEMA) was first allowed to polymerize on the surfaces of silica gel particles by initiating the ―NH2/S2O82- surface system, resulting in grafted PDMAEMA/SiO2 particles. Subsequently, the tertiary amine groups in the chains of the grafted PDMAEMA macromolecules were quaternized with chlorethamin reagent to obtain the functional grafted QPDMAEMA/SiO2 particles, on which the cationic polyelectrolyte QPDMAEMA macromolecules were grafted. The zeta potential of the QPDMAEMA/SiO2 particles was determined to estimate their surface electrical property. Isothermal adsorption experiments were carried out to investigate the effects of several main factors, including the pH value of the medium, ion strength, and temperature, on the adsorption performance of QPDMAEMA/SiO2 particles. Finally, the adsorption thermodynamics were investigated. The results showed that the functional grafted QPDMAEMA/SiO2 particles had much higher zeta potential than PDMAEMA/SiO2. BSA would be very strongly adsorbed on QPDMAEMA/SiO2 particles through electrostatic interactions. The adsorption capacity first increased and then decreased with increasing pH value, and it had a maximum value of 112 mg·g-1 when the pH value of the medium was equal to the isoelectric point of BSA (pI=4.7). On both sides of the isoelectric point, the effect of ion strength on the adsorption capacity was opposite. When the pH value of the medium was lower than the isoelectric point of BSA (i.e., pH<4.7), the adsorption capacity increased with increasing concentrations of electrolyte (NaCl). When the pH value of the medium was equal to the isoelectric point of BSA (i.e., pH=4.7), the adsorption capacity was almost unchanged with ion strength. The adsorption process was exothermic and during this process the entropy tended to decrease. Furthermore, this adsorption process was driven by enthalpy.
-
-
-
[1]
(1) Anirudhan, T. S.; Rejeena, S. R.; Tharun, A. R. Colloids Surf. BBiointerfaces 2012, 93, 49. doi: 10.1016/j.colsurfb.2011.12.010
-
[2]
(2) Jin, G.; Zhang, L.; Yao, Q. Z. J. Membr. Sci. 2007, 287, 271. doi: 10.1016/j.memsci.2006.10.047
-
[3]
(3) Kopac, T.; Bozgeyik, K.; Yener, J. Colloid Surf. A-Physicochem. Eng. Asp. 2008, 322, 19. doi: 10.1016/j.colsurfa.2008.02.010
-
[4]
(4) Yamasaki, K.; Chuang, V. T. G.; Maruyama, T.; Otagiri, M. Biochim. Biophys. Acta 2013, 1830, 5435. doi: 10.1016/j.bbagen.2013.05.005
-
[5]
(5) Dong, Y. S.; Zhang, F.;Wang, Z. M.; Du, L.; Hao, A. Y.; Jiang, B.; Tian, M. Y.; Li, Q.; Ji, Q. A.;Wang, S. C.; Xiu, Z. L. J. Chromatogr. A 2012, 1245, 143.
-
[6]
(6) Chen, Z.; He, Y.; Shi, B.; Yang, D. C. Biochim. Biophys. Acta 2013, 1830, 5515. doi: 10.1016/j.bbagen.2013.04.037
-
[7]
(7) Zhu, R. Y.; Xin, X.; Dai, H. Y.; Li, Q.; Lei, J. Y.; Chen, Y.; Jin, J. Protein Expr. Purif. 2012, 85, 32. doi: 10.1016/j.pep.2012.06.009
-
[8]
(8) Hirose, M.; Tachibana, A.; Tanabe, T. Mater. Sci. Eng. C 2010, 30, 664.(9) Li, J.; Liao, X. P.; Zhang, Q. X.; Shi, B. J. Chromatogr. B 2013, 928, 131.(10) Chen, L. H.; Zhu, G. S.; Zhang, D. L.; Zhao, H.; Guo, M. Y.; Shi,W.; Qiu, S. L. J. Mater. Chem. 2009, 19, 2013.
-
[9]
(11) Zhai, Z.;Wang, Y. J.; Chen, Y.; Luo, G. S. J. Sep. Sci. 2008, 31, 3527. doi: 10.1002/jssc.v31:20
-
[10]
(12) Wang, R.W.; Zhang, Y.; Ma, G. H.; Su, Z. G. Colloids Surf. BBiointerfaces 2006, 51, 93. doi: 10.1016/j.colsurfb.2006.05.015
-
[11]
(13) Marcus, R. K. J. Sep. Sci. 2008, 31, 1923.
-
[12]
(14) Hong, J.;Wang, Y. R.; Ye, X. H.; Zhang, Y. H. P. J. Chromatogr. B 2008, 1194, 150.
-
[13]
(15) Wang, S. Y.; Chen, K. M.; Kayitmazer, A. B.; Li. L.; Guo, X. H. Colloids Surf. B-Biointerfaces 2013, 107, 251. doi: 10.1016/j.colsurfb.2013.02.026
-
[14]
(16) Henzler, K.; Haupt, B.; Ballauff, M. Anal. Biochem. 2008, 378, 184. doi: 10.1016/j.ab.2008.04.011
-
[15]
(17) Wittemann, A.; Ballauff, M. Macromol. Biosci. 2005, 5, 13.
-
[16]
(18) Chen, K.; Zhu, Y.; Li, L.; Lu, Y.; Guo, X. Macromol. Rapid Commun. 2010, 31, 1440.
-
[17]
(19) Chen, K.; Zhu, Y.; Zhang, Y.; Li, L.; Lu, Y.; Guo, X. Macromolecules 2011, 44, 632. doi: 10.1021/ma102337c
-
[18]
(20) Ahmad, A.; Liu, X. C.; Li, L.; Guo, X. H. Adv. Chem. Eng. 2014, 44, 193. doi: 10.1016/B978-0-12-419974-3.00004-X
-
[19]
(21) Fang, X. L.; Gao, B. J.; Huang, X.W.; Zhang, Y. Q.; Gu, L. Y. Acta Polym. Sin. 2012, No. 12, 1472. [房晓琳, 高保娇,黄小卫, 张永奇, 顾来沅. 高分子学报, 2012, No. 12, 1472.](22) Amara, M.; Kerdjoudj, H. Talanta 2003, 60, 991. doi: 10.1016/S0039-9140(03)00155-3
-
[20]
(23) Yang, H.; Zheng, Q.; Cheng, R. S. Colloid Surf. A-Physicochem. Eng. Asp. 2012, 407, 1. doi: 10.1016/j.colsurfa.2012.05.031
-
[21]
(24) Ballauff, M.; Borisov, O. Curr. Opin. Colloid Interface Sci. 2006, 11, 316. doi: 10.1016/j.cocis.2006.12.002
-
[22]
(25) van der Veen, M.; Norde,W.; Stuart, M. C. Colloids Surf. BBiointerfaces 2004, 35, 33.
-
[23]
(26) Shamim, N.; Liang, H.; Hidajat, K.; Uddin, M. S. J. Colloid Interface Sci. 2008, 320, 15.
-
[24]
(27) Li,W. K.; Li, S. J. Colloid Surf. A-Physicochem. Eng. Asp. 2007, 295, 159. doi: 10.1016/j.colsurfa.2006.08.046
-
[25]
(28) Peng, Z. G.; Hidajat, K.; Uddin, M. S. Colloids Surf. BBiointerfaces 2004, 35, 169. doi: 10.1016/j.colsurfb.2004.03.010
-
[26]
(29) Bayramo?lu, G.; Ekici, G.; Be?irli, N.; Arica, M. Y. Colloid Surf. A-Physicochem. Eng. Asp. 2007, 310, 68. doi: 10.1016/j.colsurfa.2007.05.067
-
[27]
(30) Fu, H. Y.; Gao, B. J.; Niu, Q. Y. Acta Phys. -Chim. Sin. 2010, 26, 359. [付红艳, 高保娇, 牛庆媛. 物理化学学报, 2010, 26, 359.] doi: 10.3866/PKU.WHXB20100207
-
[28]
(31) Cestari, A. R.; Vieira, E. F. S.; Mattos, C. R. S. J. Chem. Thermodyn. 2006, 38, 1092. doi: 10.1016/j.jct.2005.11.011
-
[29]
(32) Anjos, F. S. C.; Vieira, E. F. S.; Cestaril, A. R. J. Colloid Interface Sci. 2002, 253, 243. doi: 10.1006/jcis.2002.8537
-
[30]
(33) Benhamou, A.; Basly, J. P.; Baudu, M.; Derriche, Z.; Hamacha, R. J. Colloid Interface Sci. 2013, 404, 135.
-
[1]
-
-
-
[1]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[2]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[3]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[4]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[5]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[6]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[7]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[8]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[9]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[10]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[11]
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
-
[12]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[13]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[14]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[15]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[16]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[17]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[18]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[19]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[20]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[1]
Metrics
- PDF Downloads(390)
- Abstract views(638)
- HTML views(27)