Citation: HAN Tao, HUANG Wei, WANG Xiao-Dong, TANG Yu, LIU Shuang-Qiang, YOU Xiang-Xuan. Study of Ce-Cu-Co/CNTs Catalysts for the Synthesis of Higher Alcohols and Ethanol from Syngas[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2127-2133. doi: 10.3866/PKU.WHXB201409121 shu

Study of Ce-Cu-Co/CNTs Catalysts for the Synthesis of Higher Alcohols and Ethanol from Syngas

  • Received Date: 5 June 2014
    Available Online: 12 September 2014

    Fund Project: 国家自然科学基金重点项目(21336006) (21336006) 国家自然科学基金面上项目(21176176) (21176176) 高等学校博士学科点专项(优先发展领域) (20111402130002) (优先发展领域) (20111402130002)煤转化国家重点实验室开放课题基金项目(J14-15-603)资助 (J14-15-603)

  • A series of Ce-Cu-Co/carbon nanotubes (CNTs) catalysts with different Ce contents were prepared by co-impregnation, and the catalytic performance was investigated for the synthesis of higher alcohols from syngas. The catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), N2 adsorption-desorption isotherms (BET), transmission electron microscopy (TEM), and temperature-programmed desorption of CO (CO-TPD). The results showed that at a Ce content of 3% the catalyst had the highest catalytic activity. The formation rate and selectivity of alcohol reached 696.4 mg·g-1· h-1 and 59.7%, where the mass fraction of ethanol was 46.8% of the total amount of alcohols. The addition of an appropriate amount of Ce facilitated the dispersion of Cu and promoted reduction of the catalysts. It also markedly increased the adsorption capacity for CO, and significantly improved the formation of active sites for alcohols, which is favorable for the catalytic activity and to improve the selectivity of alcohols. Research showed that combining the CuCo-based catalyst, which has high activity and a high ability of carbon chain growth, with the confinement effect of CNTs can result in a narrow distribution of alcohols and significantly improve the selectivity of ethanol.

  • 加载中
    1. [1]

      (1) Li, D. B.; Ma, Y. G.; Qi, H. J.; Li,W. H.; Sun, Y. H.; Zhong, B. Prog. Chem. 2004, 16, 584. [李德宝, 马玉刚, 齐会杰, 李文怀, 孙予罕, 钟炳. 化学进展, 2004, 16, 584.]

    2. [2]

      (2) Ran, H. F.; Fang, K. G.; Lin, M. G.; Sun, Y. H. Nat. Gas Chem. Ind. 2010, 35, 1. [冉宏峰, 房克功, 林明桂, 孙予罕. 天然气化工, 2010, 35, 1.]

    3. [3]

      (3) Xiao, K.; Bao, Z. H.; Qi, X. Z.;Wang, X. X.; Zhong, L. S.; Fang, K. G.; Lin, M. G.; Sun, Y. H. Chin. J. Catal. 2013, 34, 116.

    4. [4]

      (4) Zheng,W.;Yao, X. G.; Hu, D. Z.;Wen, L. Q.;Wang, X. Q. Sci. Technol. Inf. 2009, 10. [郑伟, 姚喜贵, 胡大志, 文良起, 王小倩. 科技资讯, 2009, 10.]

    5. [5]

      (5) Shi, L. M.; Chu,W. J. Mol. Catal. (China) 2011, 25, 316. [士丽敏, 储伟. 分子催化, 2011, 25, 316.]

    6. [6]

      (6) Lin, M. G.; Fang, K. G.; Li, D. B.; Sun, Y. H.; Chin. J. Catal. 2008, 29, 559. [林明桂, 房克功, 李德宝, 孙予罕. 催化学报, 2008, 29, 559.]

    7. [7]

      (7) Wang, N.; Fang, K. G.; Lin, M. G.; Jiang, D.; Li, D. B.; Sun, Y. H. Nat. Gas Chem. Ind. 2010, 35, 6. [王宁, 房克功, 林明桂, 姜东, 李德宝, 孙予罕. 天然气化工, 2010, 35, 6.]

    8. [8]

      (8) Chen, X. P.; Zhao, N.; Sun, Y. H.; Ren, J.;Wang, X. Z.; Zhong, B. Coal Convers. 1998, 21, 22. [陈小平, 赵宁, 孙予罕,任杰, 王秀芝, 钟炳. 煤炭转化, 1998, 21, 22.]

    9. [9]

      (9) Shi, L. M.; Chu,W.; Deng, S. Y. J. Fuel Chem. Technol. 2012, 40, 436. [士丽敏, 储伟, 邓思玉. 燃料化学学报, 2012, 40, 436.]

    10. [10]

      (10) Pan, H.; Bai, F. H.; Su, H. Q. Chem. Ind. Eng. Prog. 2010, 29, 157. [潘慧, 白凤华, 苏海全. 化工进展, 2010, 29, 157.]

    11. [11]

      (11) Mao, D. S.; Guo, S. Q.; Yu, J.; Han, L. P.; Lu, G. Z. Acta. Phys. -Chim. Sin. 2011, 27, 2639. [毛东森, 郭胜强, 俞俊,韩璐蓬, 卢冠忠. 物理化学学报, 2011, 27, 2639.] doi: 10.3866/PKU.WHXB20111125

    12. [12]

      (12) Huang, L. H.; Chu,W.; Hong, J. P.; Luo, S. Z. Chin. J. Catal. 2006, 27, 596. [黄利宏, 储伟, 洪景萍, 罗仕忠. 催化学报, 2006, 27, 596.] doi: 10.1016/S1872-2067(06)60033-8

    13. [13]

      (13) Dong, X.; Liang, X. L.; Li, H. Y.; Lin, G. D.; Zhang, P.; Zhang, H. B. Catal. Today 2009, 147, 158. doi: 10.1016/j.cattod.2008.11.025

    14. [14]

      (14) Wang, M.W.; Li, F. Y.; Peng, N. C. New Carbon Mater. 2002, 17, 75. [王敏炜, 李凤仪, 彭年才. 新型碳材料, 2002, 17, 75.](15) Pan, X. L.; Fan, Z. L.; Chen,W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Nat. Mater. 2007, 6, 507.

    15. [15]

      (16) Shi, L. M.; Chu,W.; Xu, H. Y.; Deng, S. Y. Rare Metal Mater. Eng. 2009, 38, 1382. [士丽敏, 储伟, 徐慧远, 邓思玉. 稀有金属材料与工程. 2009, 38, 1382.]

    16. [16]

      (17) Wang, J. J.; Chernavskii, P. A.;Wang, Y.; Khodakov, A. Y. Fuel 2013, 103, 1111. doi: 10.1016/j.fuel.2012.07.055

    17. [17]

      (18) Shi, L. M.; Chu,W.; Deng, S. Y. J. Nat. Gas Chem. 2011, 20, 48. doi: 10.1016/S1003-9953(10)60145-4

    18. [18]

      (19) Cai, Q. R.; Peng, S. Y. The Catalysis Action in C1 Chemistry. Chemical Industry Press: Beijing, 1995; p137. [蔡启瑞, 彭少逸. 碳-化学中的催化作用. 北京: 化学工业出版社, 1995: 137.]

    19. [19]

      (20) Xiao, D. X.; Doesburg, E. S. J. Catal. Today 1987, 2, 123.

    20. [20]

      (21) Nachal, D. S.; G. B.; Challa, S. S. R. K.; James, J. S. Catal. Today 2009, 147, 100. doi: 10.1016/j.cattod.2009.02.027

    21. [21]

      (22) Jae, Y. K.; Jose, A. R.; Jonathan, C. H.; Anatoly, I. F.; Peter, L. L. J. Am. Chem. Soc. 2003, 125, 10684. doi: 10.1021/ja0301673

    22. [22]

      (23) Christpher, S. P.; Hari, N.; Chelsey, D. B. J. Catal. 2009, 266, 308. doi: 10.1016/j.jcat.2009.06.021

    23. [23]

      (24) Jing, G.; Jian, Z. G.; Dan, L.; Zhao, Y. H; Jin, H. F.; Xiao, M. Z. Int. J. Hydrog. Energy 2008, 33, 5493. doi: 10.1016/j.ijhydene.2008.07.040

    24. [24]

      (25) Damyanva, S.; Bueno, J. M. C. Appl. Catal. A 2003, 253, 135. doi: 10.1016/S0926-860X(03)00500-3

    25. [25]

      (26) Shu, J. J.; Shao, Q. S. Appl. Catal. B 2013, 140 -141, 1.

    26. [26]

      (27) Fang, Y. Z.; Liu, Y.; Zhang, L. H. Appl. Catal. A 2011, 397, 183. doi: 10.1016/j.apcata.2011.02.032

    27. [27]

      (28) Li, H. Y.; Ren, X. B.; Guo, X. Y. Chem. Phys. Lett. 2007, 437, 108. doi: 10.1016/j.cplett.2007.02.015

    28. [28]

      (29) Shu, J. C.; Xiu, L. P.; Liang, Y.; Xin, H. B. Mater. Lett. 2011, 65, 1522. doi: 10.1016/j.matlet.2011.02.070

    29. [29]

      (30) Santiso, E. E.; Kostov, M. K.; George, A. M.; Nardelli, M. B.; Gubbins, K. E. Appl. Surf. Sci. 2007, 253, 5570. doi: 10.1016/j.apsusc.2006.12.121

    30. [30]

      (31) Guo, S. Q.; Mao, D. S.; Yu, J.; Han, P. L. J. Fuel Chem. Technol. 2012, 40, 1103. [郭强胜, 毛东森, 俞俊, 韩璐蓬. 燃料化学学报, 2012, 40, 1103.]


  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    3. [3]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    10. [10]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    12. [12]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    16. [16]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    17. [17]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    18. [18]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(397)
  • Abstract views(569)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return