Citation: SUN Qian, YANG Xiong-Bo, GAO Ya-Jun, ZHAO Jian-Wei. Molecular Dynamics Simulation of the Deformation Behavior of Ag Nanowires with Different Twin Boundary Density under Tension Loading[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2015-2023. doi: 10.3866/PKU.WHXB201409101
-
The deformation mechanisms and mechanical tensile behavior of Ag nanowires containing different densities of parallel twin boundaries were investigated using molecular dynamics simulations. The effect of twin boundaries on the Young's modulus in nanowires was not obvious in the elastic deformation stage. After the elastic deformation stage, the initial dislocation from the edge of the free surfaces in nanowires resulted in plastic deformation. The existence of the twin boundary in nanowires will cause the spread of the dislocation and act as sources of dislocations with the assistance of the newly formed defects with further tension load. The simulation showed that the mechanical strength of Ag nanowires was highly dependent on the twin boundary spacing and the size of the grain, resulting from the aspect ratio between the spacing distance and the length of the cross-section. In particular, twinned Ag nanowires with small twin density (aspect ratio > 1) had small yielding stresses, even less than that of the single crystal Ag nanowires. Only with large twin density (aspect ratio < 1) can the nanowires be strengthened by the structure of the twin boundaries. We also investigated the effects of tensile rate and temperature on the yielding strength of the Ag nanowires. With increasing temperature, the difference of yielding stress between twinned nanowires and single crystal nanowires first increased and then decreased to a stable level. With increasing tensile rate, this difference showed the opposite trend.
-
-
[1]
(1) Sun,W.; Zhang, J. J.; Zhao, J.W. Acta Phys. -Chim. Sin. 2013, 29, 1931. [孙玮, 张晋江, 赵健伟. 物理化学学报, 2013, 29, 1931.] doi: 10.3866/PKU.WHXB201305311
-
[2]
(2) Branicio, P. S.; Rino, J. P. Phys. Rev. B 2000, 62, 16950. doi: 10.1103/PhysRevB.62.16950
-
[3]
(3) Ikeda, H.; Qi, Y.; Cagin, T.; Samwer, K.; Johnson,W. L.; ddard,W. A. Phys. Rev. Lett. 1999, 82, 2900. doi: 10.1103/PhysRevLett.82.2900
-
[4]
(4) Christ, A.; Zentgraf, T.; Kuhl, J.; Tikhodeev, S.; Gippius, N.; Giessen, H. Phys. Rev. B 2004, 70, 125113. doi: 10.1103/PhysRevB.70.125113
-
[5]
(5) Gülseren, O.; Ercolessi, F.; Tosatti, E. Phys. Rev. B 1995, 51, 7377. doi: 10.1103/PhysRevB.51.7377
-
[6]
(6) Lai, S.; Guo, J.; Petrova, V.; Ramanath, G.; Allen, L. Phys. Rev. Lett. 1996, 77, 99. doi: 10.1103/PhysRevLett.77.99
-
[7]
(7) Alexandrov, A. S.; Kabanov, V. V. Phys. Rev. Lett. 2005, 95, 076601. doi: 10.1103/PhysRevLett.95.076601
-
[8]
(8) Zhao, J.W.;Wang, F. Y.; Jiang, L. Y.; Yin, X.; Liu, Y. H. Acta Phys. -Chim. Sin. 2009, 25, 1835. [赵健伟, 王奋英, 蒋璐芸,尹星, 刘云红. 物理化学学报, 2009, 25, 1835.] doi: 10.3866/PKU.WHXB20090909
-
[9]
(9) Tian, M. L.;Wang, J. U.; Kurtz, J.; Mallouk, T. E.; Chan, M. H. W. Nano. Lett. 2003, 3, 919. doi: 10.1021/nl034217d
-
[10]
(10) Wang, J.; Tian, M.; Mallouk, T. E.; Chan, M. H. J. Phys. Chem. B 2004, 108, 841. doi: 10.1021/jp035068q
-
[11]
(11) Lu, K.; Lu, L.; Suresh, S. Science 2009, 324, 349. doi: 10.1126/science.1159610
-
[12]
(12) Lu, L.; Sui, M.; Lu, K. Science 2000, 287, 1463. doi: 10.1126/science.287.5457.1463
-
[13]
(13) Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Science 2004, 304, 422. doi: 10.1126/science.1092905
-
[14]
(14) Lu, L.; Chen, X.; Huang, X.; Lu, K. Science 2009, 323, 607. doi: 10.1126/science.1167641
-
[15]
(15) Zhong, S.; Koch, T.;Wang, M.; Scherer, T.;Walheim, S.; Hahn, H.; Schimmel, T. Small 2009, 5, 2265. doi: 10.1002/smll.v5:20
-
[16]
(16) Marszalek, P. E.; Greenleaf,W. J.; Li, H.; Oberhauser, A. F.; Fernandez, J. M. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 6282. doi: 10.1073/pnas.97.12.6282
-
[17]
(17) Wu, B.; Heidelberg, A.; Boland, J. J. Nat. Mater. 2005, 4, 525. doi: 10.1038/nmat1403
-
[18]
(18) Greer, J. R.; Oliver,W. C.; Nix,W. D. Acta Mater. 2005, 53, 1821. doi: 10.1016/j.actamat.2004.12.031
-
[19]
(19) Frøseth, A.; Van Swygenhoven, H.; Derlet, P. Acta Mater. 2004, 52, 2259. doi: 10.1016/j.actamat.2004.01.017
-
[20]
(20) Frøseth, A.; Derlet, P.; Van Swygenhoven, H. Appl. Phys. Lett. 2004, 85, 5863. doi: 10.1063/1.1835531
-
[21]
(21) Yang, Z. Y.; Lu, Z. X.; Zhao, Y. P. J. Appl. Phys. 2009, 106, 023537. doi: 10.1063/1.3186619
-
[22]
(22) Yang, Z. Y.; Lu, Z. X.; Zhao, Y. P. Comput. Mater. Sci. 2009, 46, 142. doi: 10.1016/j.commatsci.2009.02.015
-
[23]
(23) Frøseth, A.; Derlet, P.; Van Swygenhoven, H. Scripta. Mater. 2006, 54, 477.
-
[24]
(24) Yamakov, V.;Wolf, D.; Phillpot, S.; Gleiter, H. Acta Mater. 2003, 51, 4135. doi: 10.1016/S1359-6454(03)00232-5
-
[25]
(25) Jin, Z. H.; Gumbsch, P.; Ma, E.; Albe, K.; Lu, K.; Hahn, H.; Gleiter, H. Scripta. Mater. 2006, 54, 1163. doi: 10.1016/j.scriptamat.2005.11.072
-
[26]
(26) Cao, A.;Wei, Y. Phys. Rev. B 2006, 74, 214108. doi: 10.1103/PhysRevB.74.214108
-
[27]
(27) Cao, A.;Wei, Y. J. Appl. Phys. 2007, 102, 083511. doi: 10.1063/1.2794884
-
[28]
(28) Afanasyev, K. A.; Sansoz, F. Nano Lett. 2007, 7, 2056. doi: 10.1021/nl070959l
-
[29]
(29) Zhang, Y. F.; Huang, H. C. Nanoscale Res. Lett. 2009, 4, 34. doi: 10.1007/s11671-008-9198-1
-
[30]
(30) Zhang, J.; Xu, F.; Yan, Y.; Sun, T. Chin. Sci. Bull. 2013, 58, 684. doi: 10.1007/s11434-012-5575-3
-
[31]
(31) Yuan, L.; Jing, P.; Liu, Y. H.; Xu, Z. H.; Shan, D. B.; Guo, B. Acta Phys. -Chim. Sin. 2014, 63, 1. [袁林, 敬鹏, 刘艳华,徐振海, 单德彬, 郭斌. 物理化学学报, 2014, 63, 1.] doi: 10.3866/PKU.WHXB201311263
-
[32]
(32) Gao, Y.; Fu, Y.; Sun,W. Comput. Mater. Sci. 2012, 55, 322. doi: 10.1016/j.commatsci.2011.11.005
-
[33]
(33) Hoover,W. G. Phys. Rev. A 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695
-
[34]
(34) Nosé, S. J. Chem. Phys 1984, 81, 511. doi: 10.1063/1.447334
-
[35]
(35) Daw, M. S.; Baskes, M. I. Phys. Rev. Lett. 1983, 50, 1285. doi: 10.1103/PhysRevLett.50.1285
-
[36]
(36) Zhao, J.W.; Yin, X.; Liang, S.; Liu, Y. H.;Wang, D. X.; Deng, S. Y.; Hou, J. Chem. Res. Chin. Univ. 2008, 24, 367. doi: 10.1016/S1005-9040(08)60077-X
-
[37]
(37) Liu, Y.; Zhao, J.;Wang, F. Phys. Rev. B 2009, 80, 115417. doi: 10.1103/PhysRevB.80.115417
-
[38]
(38) Wang, D.; Zhao, J.; Hu, S.; Yin, X.; Liang, S.; Liu, Y.; Deng, S. Nano Lett. 2007, 7, 1208. doi: 10.1021/nl0629512
-
[39]
(39) Wang, F.; Gao, Y.; Zhu, T.; Zhao, J. Nanoscale Res . Lett. 2011, 6, 1.(40) Zhao, J.; Murakoshi, K.; Yin, X.; Kiguchi, M.; Guo, Y.;Wang, N.; Liang, S.; Liu, H. J. Phys. Chem. C 2008, 112, 20088. doi: 10.1021/jp8055448
-
[40]
(41) Wang, F.; Sun,W.;Wang, H.; Zhao, J.; Kiguchi, M.; Sun, C. J. Nanopart. Res. 2012, 14, 1.(42) Cao, A.;Wei, Y.; Mao, S. X. Appl. Phys. Lett. 2007, 90, 151909. doi: 10.1063/1.2721367
-
[41]
(43) Deng, C.; Sansoz, F. Phys. Rev. B 2010, 81, 155430. doi: 10.1103/PhysRevB.81.155430
-
[42]
(44) Wang, J.; Li, N.; Anderoglu, O.; Zhang, X.; Misra, A.; Huang, J.; Hirth, J. Acta Mater. 2010, 58, 2262. doi: 10.1016/j.actamat.2009.12.013
-
[43]
(45) Wang, Y. D.; Liu,W.; Lu, L.; Ren, Y.; Nie, Z. H.; Almer, J.; Cheng, S.; Shen, Y. F.; Zuo, L.; Liaw, P. K. Adv. Eng. Mater. 2010, 12, 906. doi: 10.1002/adem.201000123
-
[44]
(46) Li, X.;Wei, Y.; Lu, L.; Lu, K.; Gao, H. Nature 2010, 464, 877. doi: 10.1038/nature08929
-
[45]
(47) Deng, C.; Sansoz, F. Appl. Phys. Lett. 2009, 95, 091914. doi: 10.1063/1.3222936
-
[46]
(48) Wei, Y. Mater. Sci. Eng. A 2011, 528, 1558. doi: 10.1016/j.msea.2010.10.072
-
[47]
(49) Cao, A.; Ma, E. Acta Mater. 2008, 56, 4816. doi: 10.1016/j.actamat.2008.05.044
-
[48]
(50) Gao, Y.;Wang, H.; Zhao, J.; Sun, C.;Wang, F. Comput. Mater. Sci. 2011, 50, 3032. doi: 10.1016/j.commatsci.2011.05.023
-
[49]
(51) You, Z.; Lu, L.; Lu, K. Scripta. Mater. 2010, 62, 415. doi: 10.1016/j.scriptamat.2009.12.002
-
[1]
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[3]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[4]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[5]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[6]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[7]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[8]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[9]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[10]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[11]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[12]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[13]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[14]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[15]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[16]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[17]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[18]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[19]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[20]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[1]
Metrics
- PDF Downloads(564)
- Abstract views(558)
- HTML views(7)