Citation: LIN Xue, GUO Xiao-Yu, WANG Qing-Wei, CHANG Li-Min, ZHAI Hong-Ju. Hydrothermal Synthesis and Efficient Visible Light Photocatalytic Activity of Bi2MoO6/BiVO4 Heterojunction[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2113-2120. doi: 10.3866/PKU.WHXB201409052 shu

Hydrothermal Synthesis and Efficient Visible Light Photocatalytic Activity of Bi2MoO6/BiVO4 Heterojunction

  • Received Date: 30 June 2014
    Available Online: 5 September 2014

    Fund Project: 国家自然科学基金(21407059, 61308095) (21407059, 61308095)吉林省科技发展计划项目(20130522071JH, 20130102004JC, 20140101160JC)资助 (20130522071JH, 20130102004JC, 20140101160JC)

  • A Bi2MoO6/BiVO4 photocatalyst with a heterojunction structure was synthesized by a one-pot hydrothermal method. Its crystal structure and microstructure were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The FESEM and HRTEM images indicated that Bi2MoO6 nanoparticles were loaded on the surface of BiVO4 nanoplates to form a heterojunction. The ultraviolet visible (UV-Vis) diffuse reflection spectra (DRS) showed that the resulting Bi2MoO6/BiVO4 heterojunction possessed more intensive absorption within the visible light range compared with pure Bi2MoO6 and BiVO4. These excellent structural and spectral properties endowed the Bi2MoO6/BiVO4 heterojunction with enhanced photocatalytic activity. It was found that the Rhodamine B (RhB) degradation rate with Bi2MoO6/BiVO4 was higher than that with pure BiVO4 and Bi2MoO6 under visible light (λ>420 nm) by photocatalytic measurements. The enhanced photocatalytic performance of the Bi2MoO6/BiVO4 sample can be attributed to the improved separation efficiency of photogenerated hole-electron pairs generated by the heterojunction between Bi2MoO6 and BiVO4, intensive absorption within the visible light range, and high specific surface area.

  • 加载中
    1. [1]

      (1) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.] doi: 10.3866/PKU.WHXB20081123

    2. [2]

      (2) Mao, Y. B.; Wong, S. S. J. Am. Chem. Soc. 2006, 128, 8217. doi: 10.1021/ja0607483

    3. [3]

      (3) Li, B. X.; Wang, Y. F.; Liu, T. X. Acta Phys. -Chim. Sin. 2011, 27 (12), 2946. [李本侠, 王艳芬, 刘同宣. 物理化学学报, 2011, 27 (12), 2946.] doi: 10.3866/PKU.WHXB20112946

    4. [4]

      (4) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    5. [5]

      (5) Lu, S. Y.;Wu, D.;Wang, Q. L.; Yan, J. H.; Buekens, A. G.; Cen, K. F. Chemosphere 2011, 82, 1215. doi: 10.1016/j.chemosphere.2010.12.034

    6. [6]

      (6) Huang, C. X.; Zhu, K. R.; Qi, M. Y.; Zhuang, Y. L.; Cheng, C. J. Phys. Chem. Solids 2012, 73, 757.

    7. [7]

      (7) Hasanpour, A.; Niyaifar, M.; Mohammadpour, H.; Amighian, J. J. Phys. Chem. Solids 2012, 73, 1066. doi: 10.1016/j.jpcs.2012.04.003

    8. [8]

      (8) Lin, Y.; Geng, Z. G.; Cai, H. B.; Ma, L.; Chen, J.; Zeng, J.; Pan, N.;Wang, X. Q. Eur. J. Inorg. Chem. 2012, 28, 4439.

    9. [9]

      (9) Dai, Y. Q.; Jing, Y.; Zeng, J.; Qi, Q.;Wang, C. L.; ldfeld, D.; Xu, C. H.; Zheng, Y. P.; Sun, Y. M. J. Mater. Chem. 2011, 21, 18174. doi: 10.1039/c1jm13641k

    10. [10]

      (10) Yan, Y.; Sun, S. F.; Song, Y.; Yan, X.; Guan,W. S.; Liu, X. L.; Shi,W. D. J. Hazard. Mater. 2013, 250-251, 106.

    11. [11]

      (11) Wang, X. K.; Li, G. C.; Ding, J.; Peng, H. R.; Chen, K. Z. Mater. Res. Bull. 2012, 47, 3814. doi: 10.1016/j.materresbull. 2012.04.082

    12. [12]

      (12) Lin, X.; Li, H. J.; Yu, L. L.; Zhao, H.; Yan, Y. S.; Liu, C. B.; Zhai, H. J. Mater. Res. Bull. 2013, 48, 4424. doi: 10.1016/j.materresbull.2013.06.075

    13. [13]

      (13) Lin, X.; Lv, P.; Guan, Q. F.; Li, H. B.; Zhai, H. J.; Liu, C. B. Appl. Surf. Sci. 2012, 258, 7146. doi: 10.1016/j.apsusc.2012.04.019

    14. [14]

      (14) Zhang, L.W.;Wang, Y. J.; Cheng, H. Y.; Yao,W. Q.; Zhu, Y. F. Adv. Mater. 2009, 21, 1286. doi: 10.1002/adma.v21:12

    15. [15]

      (15) Zhuo, Y. Q.; Huang, J. F.; Cao, L. Y.; Ouyang, H. B.;Wu, J. P. Mater. Lett. 2013, 90, 107. doi: 10.1016/j.matlet.2012.09.009

    16. [16]

      (16) Tian, G. H.; Chen, Y. J.; Meng, X. Y.; Zhou, J.; Zhou,W.; Pan, K.; Tian, C. G.; Ren, Z. Y.; Fu, H. G. ChemPlusChem 2013, 78, 117. doi: 10.1002/cplu.201200198

    17. [17]

      (17) Zhang, A. P.; Zhang, J. Z. Appl. Surf. Sci. 2010, 256, 3224. doi: 10.1016/j.apsusc.2009.12.009

    18. [18]

      (18) Cao, S.W.; Yin, Z.; Barber, J.; Boey, F. Y. C.; Loo, S. C. J.; Xue, C. ACS Appl. Mater. Interfaces 2012, 4, 418. doi: 10.1021/am201481b

    19. [19]

      (19) Zhang, J. Y.;Wang, Y. H.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. G. ACS Appl. Mater. Interfaces 2013, 5, 1031. doi: 10.1021/am302726y

    20. [20]

      (20) Yuan, B.;Wang, C. H.; Qi, Y.; Song, X. L.; Mu, K.; Guo, P.; Meng, L. T. Colloid Surface A 2013, 425, 99. doi: 10.1016/j.colsurfa.2013.02.058

    21. [21]

      (21) Ge, L.; Liu, J. Mater. Lett. 2011, 65, 1828. doi: 10.1016/j.matlet.2011.03.066

    22. [22]

      (22) Chatchai, P.; Kishioka, S. Y.; Murakami, Y.; Nosaka, A. Y.; Nosaka, Y. Electrochimica Acta 2010, 55, 592. doi: 10.1016/j.electacta.2009.09.032

    23. [23]

      (23) Zhang, X. F.; ng, Y.; Dong, X. L.; Zhang, X. X.; Ma, C.; Shi, F. Mater. Chem. Phys. 2012, 136, 472. doi: 10.1016/j.matchemphys.2012.07.013

    24. [24]

      (24) Zhang, F. J.; Zhu, S. F.; Xie, F. Z.; Zhang, J.; Meng, Z. D. Sep. Purif. Technol. 2013, 113, 1. doi: 10.1016/j.seppur.2013.04.008

    25. [25]

      (25) Tian, Y. L.; Chang, B. B.; Lu, J. L.; Fu, J.; Xi, F. N.; Dong, X. P. ACS Appl. Mater. Interfaces 2013, 5, 7079. doi: 10.1021/am4013819

    26. [26]

      (26) Wang, S.; Yi, L. X.; Halpert, J. E.; Lai, X. Y.; Liu, Y. Y.; Cao, H. B.;Yu, R. B.;Wang, D.; Li, Y. L. Small 2012, 8, 265. doi: 10.1002/smll.v8.2

    27. [27]

      (27) Du, J.; Lai, X. Y.; Yang, N. L.; Zhai, J.; Kisailus, D.; Su, F. B.; Wang, D.; Jiang, L. ACS Nano 2011, 5, 590. doi: 10.1021/nn102767d

    28. [28]

      (28) Yang, N. L.; Liu, Y. Y.;Wen, H.; Tang, Z. Y.; Zhao, H. J.; Li, Y. L.;Wang, D. ACS Nano 2013, 7, 1504. doi: 10.1021/nn305288z

    29. [29]

      (29) Yu, C. L.; Li, G.; Kumar, S.; Yang, K.; Jin, R. C. Adv. Mater. 2014, 26, 892(30) Sun, Y.; Xie, Y.;Wu, C.; Long, R. Cryst. Growth Des. 2010, 10, 602. doi: 10.1021/cg900988j

    30. [30]

      (31) Shang, M.;Wang,W. Z.; Sun, S. M.; Ren, J.; Zhou, L.; Zhang, L. J. Phys. Chem. C 2009, 113, 20228. doi: 10.1021/jp9067729

    31. [31]

      (32) Wu, S. Y.; Zheng, H.; Lian, Y.W.;Wu, Y. Y. Mater. Res. Bull. 2013, 48, 2901. doi: 10.1016/j.materresbull.2013.04.041

    32. [32]

      (33) Yan, H. J.; Yang, H. X. J. Alloy. Compd. 2011, 509, L26.

    33. [33]

      (34) Xu, H.; Yan, J.; Xu, Y. G.; Song, Y. H.; Li, H. M.; Xia, J. X.; Huang, C. J.;Wan, H. L. Appl. Catal. B: Environ. 2013, 129, 182. doi: 10.1016/j.apcatb.2012.08.015

    34. [34]

      (35) Li, T. T.; Zhao, L. H.; He, Y. M.; Cai, J.; Luo, M. F.; Lin, J. J. Appl. Catal. B: Environ. 2013, 129, 255. doi: 10.1016/j.apcatb.2012.09.031

    35. [35]

      (36) Wang, S. M.; Li, D. L.; Sun, C.; Yang, S. G.; Guan, Y.; He, H. Appl. Catal. B: Environ. 2014, 144, 885. doi: 10.1016/j.apcatb.2013.08.008

    36. [36]

      (37) Lin, X.; Yu, L. L.; Yan, L. N.; Li, H. J.; Yan, Y. S.; Liu, C. B.; Zhai, H. J. Solid State Sci. 2014, 32, 61. doi: 10.1016/j.solidstatesciences.2014.03.018

    37. [37]

      (38) Zhang, M. Y.; Shao, C. L.; Mu, J. B.; Zhang, Z. Y.; Guo, Z. C.; Zhang, P.; Liu, Y. C. CrystEngComm 2012, 14, 605. doi: 10.1039/c1ce05974b

    38. [38]

      (39) Jiang, D. L.; Chen, L. L.; Zhu, J. J.; Chen, M.; Shi,W. D.; Xie, J. M. Dalton Trans. 2013, 42, 15726. doi: 10.1039/c3dt52008k

    39. [39]

      (40) Zhang, S. Q.; Yang, Y. X.; Guo, Y. N.; Guo,W.;Wang, M.; Guo, Y. H.; Huo, M. X. J. Hazard. Mater. 2013, 261, 235. doi: 10.1016/j.jhazmat.2013.07.025


  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    9. [9]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    10. [10]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(715)
  • Abstract views(696)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return