Citation: LIN Xue, GUO Xiao-Yu, WANG Qing-Wei, CHANG Li-Min, ZHAI Hong-Ju. Hydrothermal Synthesis and Efficient Visible Light Photocatalytic Activity of Bi2MoO6/BiVO4 Heterojunction[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2113-2120. doi: 10.3866/PKU.WHXB201409052
-
A Bi2MoO6/BiVO4 photocatalyst with a heterojunction structure was synthesized by a one-pot hydrothermal method. Its crystal structure and microstructure were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The FESEM and HRTEM images indicated that Bi2MoO6 nanoparticles were loaded on the surface of BiVO4 nanoplates to form a heterojunction. The ultraviolet visible (UV-Vis) diffuse reflection spectra (DRS) showed that the resulting Bi2MoO6/BiVO4 heterojunction possessed more intensive absorption within the visible light range compared with pure Bi2MoO6 and BiVO4. These excellent structural and spectral properties endowed the Bi2MoO6/BiVO4 heterojunction with enhanced photocatalytic activity. It was found that the Rhodamine B (RhB) degradation rate with Bi2MoO6/BiVO4 was higher than that with pure BiVO4 and Bi2MoO6 under visible light (λ>420 nm) by photocatalytic measurements. The enhanced photocatalytic performance of the Bi2MoO6/BiVO4 sample can be attributed to the improved separation efficiency of photogenerated hole-electron pairs generated by the heterojunction between Bi2MoO6 and BiVO4, intensive absorption within the visible light range, and high specific surface area.
-
-
[1]
(1) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.] doi: 10.3866/PKU.WHXB20081123
-
[2]
(2) Mao, Y. B.; Wong, S. S. J. Am. Chem. Soc. 2006, 128, 8217. doi: 10.1021/ja0607483
-
[3]
(3) Li, B. X.; Wang, Y. F.; Liu, T. X. Acta Phys. -Chim. Sin. 2011, 27 (12), 2946. [李本侠, 王艳芬, 刘同宣. 物理化学学报, 2011, 27 (12), 2946.] doi: 10.3866/PKU.WHXB20112946
-
[4]
(4) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[5]
(5) Lu, S. Y.;Wu, D.;Wang, Q. L.; Yan, J. H.; Buekens, A. G.; Cen, K. F. Chemosphere 2011, 82, 1215. doi: 10.1016/j.chemosphere.2010.12.034
-
[6]
(6) Huang, C. X.; Zhu, K. R.; Qi, M. Y.; Zhuang, Y. L.; Cheng, C. J. Phys. Chem. Solids 2012, 73, 757.
-
[7]
(7) Hasanpour, A.; Niyaifar, M.; Mohammadpour, H.; Amighian, J. J. Phys. Chem. Solids 2012, 73, 1066. doi: 10.1016/j.jpcs.2012.04.003
-
[8]
(8) Lin, Y.; Geng, Z. G.; Cai, H. B.; Ma, L.; Chen, J.; Zeng, J.; Pan, N.;Wang, X. Q. Eur. J. Inorg. Chem. 2012, 28, 4439.
-
[9]
(9) Dai, Y. Q.; Jing, Y.; Zeng, J.; Qi, Q.;Wang, C. L.; ldfeld, D.; Xu, C. H.; Zheng, Y. P.; Sun, Y. M. J. Mater. Chem. 2011, 21, 18174. doi: 10.1039/c1jm13641k
-
[10]
(10) Yan, Y.; Sun, S. F.; Song, Y.; Yan, X.; Guan,W. S.; Liu, X. L.; Shi,W. D. J. Hazard. Mater. 2013, 250-251, 106.
-
[11]
(11) Wang, X. K.; Li, G. C.; Ding, J.; Peng, H. R.; Chen, K. Z. Mater. Res. Bull. 2012, 47, 3814. doi: 10.1016/j.materresbull. 2012.04.082
-
[12]
(12) Lin, X.; Li, H. J.; Yu, L. L.; Zhao, H.; Yan, Y. S.; Liu, C. B.; Zhai, H. J. Mater. Res. Bull. 2013, 48, 4424. doi: 10.1016/j.materresbull.2013.06.075
-
[13]
(13) Lin, X.; Lv, P.; Guan, Q. F.; Li, H. B.; Zhai, H. J.; Liu, C. B. Appl. Surf. Sci. 2012, 258, 7146. doi: 10.1016/j.apsusc.2012.04.019
-
[14]
(14) Zhang, L.W.;Wang, Y. J.; Cheng, H. Y.; Yao,W. Q.; Zhu, Y. F. Adv. Mater. 2009, 21, 1286. doi: 10.1002/adma.v21:12
-
[15]
(15) Zhuo, Y. Q.; Huang, J. F.; Cao, L. Y.; Ouyang, H. B.;Wu, J. P. Mater. Lett. 2013, 90, 107. doi: 10.1016/j.matlet.2012.09.009
-
[16]
(16) Tian, G. H.; Chen, Y. J.; Meng, X. Y.; Zhou, J.; Zhou,W.; Pan, K.; Tian, C. G.; Ren, Z. Y.; Fu, H. G. ChemPlusChem 2013, 78, 117. doi: 10.1002/cplu.201200198
-
[17]
(17) Zhang, A. P.; Zhang, J. Z. Appl. Surf. Sci. 2010, 256, 3224. doi: 10.1016/j.apsusc.2009.12.009
-
[18]
(18) Cao, S.W.; Yin, Z.; Barber, J.; Boey, F. Y. C.; Loo, S. C. J.; Xue, C. ACS Appl. Mater. Interfaces 2012, 4, 418. doi: 10.1021/am201481b
-
[19]
(19) Zhang, J. Y.;Wang, Y. H.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. G. ACS Appl. Mater. Interfaces 2013, 5, 1031. doi: 10.1021/am302726y
-
[20]
(20) Yuan, B.;Wang, C. H.; Qi, Y.; Song, X. L.; Mu, K.; Guo, P.; Meng, L. T. Colloid Surface A 2013, 425, 99. doi: 10.1016/j.colsurfa.2013.02.058
-
[21]
(21) Ge, L.; Liu, J. Mater. Lett. 2011, 65, 1828. doi: 10.1016/j.matlet.2011.03.066
-
[22]
(22) Chatchai, P.; Kishioka, S. Y.; Murakami, Y.; Nosaka, A. Y.; Nosaka, Y. Electrochimica Acta 2010, 55, 592. doi: 10.1016/j.electacta.2009.09.032
-
[23]
(23) Zhang, X. F.; ng, Y.; Dong, X. L.; Zhang, X. X.; Ma, C.; Shi, F. Mater. Chem. Phys. 2012, 136, 472. doi: 10.1016/j.matchemphys.2012.07.013
-
[24]
(24) Zhang, F. J.; Zhu, S. F.; Xie, F. Z.; Zhang, J.; Meng, Z. D. Sep. Purif. Technol. 2013, 113, 1. doi: 10.1016/j.seppur.2013.04.008
-
[25]
(25) Tian, Y. L.; Chang, B. B.; Lu, J. L.; Fu, J.; Xi, F. N.; Dong, X. P. ACS Appl. Mater. Interfaces 2013, 5, 7079. doi: 10.1021/am4013819
-
[26]
(26) Wang, S.; Yi, L. X.; Halpert, J. E.; Lai, X. Y.; Liu, Y. Y.; Cao, H. B.;Yu, R. B.;Wang, D.; Li, Y. L. Small 2012, 8, 265. doi: 10.1002/smll.v8.2
-
[27]
(27) Du, J.; Lai, X. Y.; Yang, N. L.; Zhai, J.; Kisailus, D.; Su, F. B.; Wang, D.; Jiang, L. ACS Nano 2011, 5, 590. doi: 10.1021/nn102767d
-
[28]
(28) Yang, N. L.; Liu, Y. Y.;Wen, H.; Tang, Z. Y.; Zhao, H. J.; Li, Y. L.;Wang, D. ACS Nano 2013, 7, 1504. doi: 10.1021/nn305288z
-
[29]
(29) Yu, C. L.; Li, G.; Kumar, S.; Yang, K.; Jin, R. C. Adv. Mater. 2014, 26, 892(30) Sun, Y.; Xie, Y.;Wu, C.; Long, R. Cryst. Growth Des. 2010, 10, 602. doi: 10.1021/cg900988j
-
[30]
(31) Shang, M.;Wang,W. Z.; Sun, S. M.; Ren, J.; Zhou, L.; Zhang, L. J. Phys. Chem. C 2009, 113, 20228. doi: 10.1021/jp9067729
-
[31]
(32) Wu, S. Y.; Zheng, H.; Lian, Y.W.;Wu, Y. Y. Mater. Res. Bull. 2013, 48, 2901. doi: 10.1016/j.materresbull.2013.04.041
-
[32]
(33) Yan, H. J.; Yang, H. X. J. Alloy. Compd. 2011, 509, L26.
-
[33]
(34) Xu, H.; Yan, J.; Xu, Y. G.; Song, Y. H.; Li, H. M.; Xia, J. X.; Huang, C. J.;Wan, H. L. Appl. Catal. B: Environ. 2013, 129, 182. doi: 10.1016/j.apcatb.2012.08.015
-
[34]
(35) Li, T. T.; Zhao, L. H.; He, Y. M.; Cai, J.; Luo, M. F.; Lin, J. J. Appl. Catal. B: Environ. 2013, 129, 255. doi: 10.1016/j.apcatb.2012.09.031
-
[35]
(36) Wang, S. M.; Li, D. L.; Sun, C.; Yang, S. G.; Guan, Y.; He, H. Appl. Catal. B: Environ. 2014, 144, 885. doi: 10.1016/j.apcatb.2013.08.008
-
[36]
(37) Lin, X.; Yu, L. L.; Yan, L. N.; Li, H. J.; Yan, Y. S.; Liu, C. B.; Zhai, H. J. Solid State Sci. 2014, 32, 61. doi: 10.1016/j.solidstatesciences.2014.03.018
-
[37]
(38) Zhang, M. Y.; Shao, C. L.; Mu, J. B.; Zhang, Z. Y.; Guo, Z. C.; Zhang, P.; Liu, Y. C. CrystEngComm 2012, 14, 605. doi: 10.1039/c1ce05974b
-
[38]
(39) Jiang, D. L.; Chen, L. L.; Zhu, J. J.; Chen, M.; Shi,W. D.; Xie, J. M. Dalton Trans. 2013, 42, 15726. doi: 10.1039/c3dt52008k
-
[39]
(40) Zhang, S. Q.; Yang, Y. X.; Guo, Y. N.; Guo,W.;Wang, M.; Guo, Y. H.; Huo, M. X. J. Hazard. Mater. 2013, 261, 235. doi: 10.1016/j.jhazmat.2013.07.025
-
[1]
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[3]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[4]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[5]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[6]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[7]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[8]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[9]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[10]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[11]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[12]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[13]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[14]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[15]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[16]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[17]
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
-
[18]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[19]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[20]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[1]
Metrics
- PDF Downloads(715)
- Abstract views(652)
- HTML views(8)