Citation: PENG Xuan. Molecular Simulations of the Purification of Toxic Benzene Gas on Single-Walled Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, ;2014, 30(11): 2000-2008. doi: 10.3866/PKU.WHXB201408291
-
Grand canonical ensemble Monte Carlo (GCMC) simulations were performed to investigate the purification of benzene from air by single-walled carbon nanotubes (SWNTs). It was found that (20,20) SWNT with a large diameter is suitable to adsorb pure benzene. For the removal of benzene in air, the minimum and maximum selectivities were observed for the (12,12) SWNT at 4.0 MPa and the (18,18) SWNT at 0.1 MPa, respectively. To obtain deep insight into the unusual behavior, we analyzed the local density profiles, snapshots, and probability profiles of N2-O2-C6H6 mixtures. The results showed that the (18,18) SWNT was entirely occupied by benzene molecules, while, for the (12,12) SWNT, N2 andwere prone to appear in the interstices between tubes, instead of inside tubes, because of stronger adsorbate-adsorbent interactions. Additionally, we calculated the orientation order parameters of the adsorbates. The results suggested that benzene molecules prefer lying nearly flat on the pore surface, while N2 and O2 molecules orient parallel to the pore axis. Finally, the effects of temperature and concentration on the selectivity of benzene were investigated. We found that with increasing temperature the selectivity in large pores decreased more evidently than that in small pores. By contrast, the concentration plays a more important role in affecting the selectivity in small pores.
-
-
[1]
(1) Benzene Poisoning in Chemical Laboratories. J. Chem. Educ. 1929, 6, 513.
-
[2]
(2) Yan, Y. P.; Chen, F. Z.; Shao, Y. X. Tech. Equip. Environmental Pollut. Control 2000, 1, 76. [颜幼平, 陈凡植, 邵英贤.环境污染治理技术与设备, 2000, 1, 76.]
-
[3]
(3) Peng, X.; Cao, D. AIChE J. 2013, 59, 2928. doi: 10.1002/aic.v59.8
-
[4]
(4) Peng, X.; Cheng, X.; Cao, D. J. Mater. Chem. 2011, 21, 11259. doi: 10.1039/c1jm10264h
-
[5]
(5) Do, D. D.; Do, H. D. Langmuir 2006, 22, 1121. doi: 10.1021/la052545i
-
[6]
(6) Coasne, B.; Fourkas, J. T.; Normale, E. J. Phys. Chem. C 2011, 115, 15471. doi: 10.1021/jp203831q
-
[7]
(7) Jousse, F.; Auerbach, S. M.; Vercauteren, D. P. J. Phys. Chem. B 2000, 104, 2360. doi: 10.1021/jp9935642
-
[8]
(8) Amirjalayer, S.; Tafipolsky, M.; Schmid, R. Angew. Chem. Int. Edit. 2007, 46, 463.
-
[9]
(9) Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0
-
[10]
(10) Cinke, M.; Li, J.; Bauschlicher, C.W.; Ricca, A.; Meyyappan, M. Chem. Phys. Lett. 2003, 376, 761. doi: 10.1016/S0009-2614(03)01124-2
-
[11]
(11) Wang,W.; Peng, X.; Cao, D. Environ. Sci. Technol. 2011, 45, 4832. doi: 10.1021/es1043672
-
[12]
(12) Huang, L.; Zhang, L.; Shao, Q.; Lu, L.; Lu, X.; Jiang, S.; Shen, W. J. Phys. Chem. C 2007, 111, 11912. doi: 10.1021/jp067226u
-
[13]
(13) Bonnaud, P.; Nieto-Draghi, C.; Ungerer, P. J. Phys. Chem. B 2007, 111, 3730. doi: 10.1021/jp067695w
-
[14]
(14) Perng, B.; Sasaki, S.; Ladanyi, B. M.; Everitt, K. F.; Skinner, J. L. Chem. Phys. Lett. 2001, 348, 491. doi: 10.1016/S0009-2614(01)01152-6
-
[15]
(15) Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.
-
[16]
(16) Frenkel, D.; Berend, S. Understanding Molecular Simulation; Academic Press: London, 2002.
-
[17]
(17) Kowalczyk, P.; Holyst, R. Environ. Sci. Technol. 2008, 42, 2931. doi: 10.1021/es071306+
-
[18]
(18) Wolf, D.; Keblinski, P.; Phillpot, S. R.; Eggebrecht, J. J. Chem. Phys. 1999, 110, 8254. doi: 10.1063/1.478738
-
[19]
(19) Peng, X.; Cao, D.;Wang,W. Ind. Eng. Chem. Res. 2010, 49, 8787. doi: 10.1021/ie1010433
-
[20]
(20) Peng, X.;Wang,W.; Xue, R.; Shen, Z. AIChE J. 2006, 52, 994.
-
[21]
(21) Coasne, B.; Alba-Simionesco, C.; Audonnet, F.; Dosseh, G.; Gubbins, K. Phys. Chem. Chem. Phys. 2011, 13, 3748. doi: 10.1039/c0cp02205e
-
[22]
(22) Nguyen, D.; Do, D. J. Phys. Chem. B 2000, 104, 11435. doi: 10.1021/jp0007282
-
[23]
(23) Yang, Q.; Ma, L.; Zhong, C.; An, X.; Liu, D. J. Phys. Chem. C 2011, 115, 2790. doi: 10.1021/jp1101835
-
[24]
(24) Coasne, B.; Alba-Simionesco, C.; Audonnet, F.; Dosseh, G.; Gubbins, K. Adsorption 2007, 13, 485. doi: 10.1007/s10450-007-9051-3
-
[25]
(25) Song, L.; Sun, Z.; Ban, H.; Dai, M.; Rees, L. Adsorption 2005, 11, 325.
-
[26]
(26) Zeng, Y.; Ju, S.; Xing,W.; Chen, C. Ind. Eng. Chem. Res. 2007, 46, 242. doi: 10.1021/ie060118+
-
[27]
(27) Bhide, S.; Yashonath. S. J. Phys. Chem. B 2000, 104, 11977. doi: 10.1021/jp002626h
-
[1]
-
-
[1]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[4]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[5]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[6]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[7]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[8]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[9]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[10]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[11]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[12]
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
-
[13]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[14]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[15]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[16]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[17]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[18]
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
-
[19]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[20]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[1]
Metrics
- PDF Downloads(541)
- Abstract views(632)
- HTML views(10)