Citation: BIAN Fu-Yong, ZHANG Ji-Wei, WANG Dan, XU Si-Chuan. Molecular Dynamics Simulation of the Permeation of Methyldopa through POPC Phospholipid Bilayer Membrane[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1947-1956. doi: 10.3866/PKU.WHXB201408271 shu

Molecular Dynamics Simulation of the Permeation of Methyldopa through POPC Phospholipid Bilayer Membrane

  • Received Date: 13 May 2014
    Available Online: 27 August 2014

    Fund Project:

  • The molecular dynamics mechanism for methyldopa permeation through the phospholipid bilayer membrane has been studied by molecular dynamics simulation. The phospholipid bilayer membrane used in the work was one type of lecithin phospholipid bilayer membrane called the 1-palmitoyl-2-oleoyl-glycero-3- phosphate dylcholine (POPC) bilayer membrane, and the molecular dynamics simulation was performed with the Gromacs program. The free energy barrier for methyldopa to permeate through the POPC bilayer membrane was 99.9 kJ·mol-1 (310 K) from the molecular dynamics simulation, suggesting that methyldopa is capable of permeating through the cell membrane. The free energy barrier for methyldopa to diffuse through the POPC bilayer membrane was 16.9-27.7 kJ·mol-1 (310 K), which indicates that it is easy for methyldopa to diffuse through the cell membrane. Therefore, the results of the free energy barrier give information of the mechanism for methyldopa to metabolize in the human body. Furthermore, the results help to understand the mechanism for methyldopa in treating hypertension disease, and have significance for developing new drugs to control hypertension.

  • 加载中
    1. [1]

      (1) Swift, P. A.; Macgre r, G. A. Journal of Renin-Angiotensin-Aldosterone System 2002, 3, 103. doi: 10.3317/jraas.2002.010

    2. [2]

      (2) Chobanian, A. V.; Bakris, G. L.; Black, H. R.; Cushman,W. C.; Green, L. A.; Izzo, J. L.; Jones, D.W.; Materson, B. J.; Oparil, S.;Wright, J. T.; Roccella, E. J. Hypertension 2003, 42, 1206. doi: 10.1161/01.HYP.0000107251.49515.c2

    3. [3]

      (3) Vedin, J. A.;Wilhelmsson, C. E.Werko, L. Brit. Heart J. 1973, 35, 1285. doi: 10.1136/hrt.35.12.1285

    4. [4]

      (4) Dollery, C. T.; Harington, M.; Hodge, J. V. Brit. Heart J. 1963, 25, 670. doi: 10.1136/hrt.25.5.670

    5. [5]

      (5) Bosworth, H. B.; Olsen, M. K.; Oddone, E. Z. Am. Heart. J. 2005, 149 (5), 795. (6) Arauz-Pacheco, C.; Parrott, M. A.; Raskin, P. Diabetes Care 2002, 25, 134. doi: 10.2337/diacare.25.1.134

    6. [6]

      (7) Lant, A. Drugs 1986, 31 (4), 40. (8) Bissoli, N. S.; Vasqufz, E. C.; Cabral, A. M. Pharmacol. Res. 1996, 33, 47. doi: 10.1006/phrs.1996.0008

    7. [7]

      (9) Warram, J. H.; Laffel, L. M.; Valsania, P.; Christlieb, A. R.; Krolewski, A. S. Arch Intern. Med. 1991, 151 (7), 1350. doi: 10.1001/archinte.1991.00400070114014

    8. [8]

      (10) Langer, S. Z.; Cavero, I.; Massingham, R. Hypertension 1980, 2, 372. doi: 10.1161/01.HYP.2.4.372

    9. [9]

      (11) Pollare, T.; Sithell, H.; Selnius, J.; Berne, C. Diabetologia 1988, 31, 415. doi: 10.1007/BF00271585

    10. [10]

      (12) Hansson, L.; Lindhol, L. H.; Niskanen, L.; Lanke, J.; Hedner, T.; Niklason, A.; Luomanmaki, K.; Dahlof, B.; de Faire, U.; Molin, C.; Karlberg, B.;Wester, P. O.; Bjorck, J. E. Lancet 1999, 353, 611. doi: 10.1016/S0140-6736(98)05012-0

    11. [11]

      (13) Brown, M. J.; Palmer, C. R.; Castaigne, A.; de Leeuw, P.W.; Mancia, G.; Rosenthal, T.; Ruilope, L. M. Lancet 2000, 356, 366. doi: 10.1016/S0140-6736(00)02527-7

    12. [12]

      (14) Hansson, L.; Hedner, T.; Lund-Johansen, P.; Kjeldsen, S. E.; Lindholm, L. H.; Syvertsen, J. O.; Lanke, J.; de Faire, U.; Dahlof, B.; Karlberg, B. Lancet 2000, 356, 359. doi: 10.1016/S0140-6736(00)02526-5

    13. [13]

      (15) Lagunin, A. A.; mazkov, O. A.; Filimonov, D. A.; Gureeva, T. A.; Dilakyan, E. A.; Kugaevskaya, E. V.; Elisseeva, Y. E.; Solovyeva, N. I.; Poroikov, V. V. J. Med. Chem. 2003, 46, 3326. doi: 10.1021/jm021089h

    14. [14]

      (16) Ferrari, R.; Ceconi, C.; Curello, S.; Pepi, P.; Mazzoletti, A.; Visioli, O. Cardiovasc. Drugs. Ther. 1996, 10, 639. doi: 10.1007/BF00052511

    15. [15]

      (17) Luke, R. G.; Kennedy, A. C. Br. Med. J. 1964, 4 (1), 27. (18) Johnson, P.; Kitchin, A. H.; Lowther, C. P.; Turner, R.W. Br. Med. J. 1966, 1, 133. doi: 10.1136/bmj.1.5480.133

    16. [16]

      (19) Iliodromiti, S.; Mackenzie, F.; Lindsay, R. S. Drug Notes 2010, 27 (4), 166. (20) Mancia, G.; Ferrai, A.; Gre rin, L. J. Am. Cardiol. 1980, 46(5), 1237. (21) Webster, J.; Jeffers, T. A.; Galloway, D. B.; Petrie, J. C.; Barker, N. P. Br. Med. J. 1977, 8 (1), 76. (22) Bobik, A.; Jennings, G.; Jackman, G.; Oddie, C.; Korner, P. Hypertension 1986, 8, 16. doi: 10.1161/01.HYP.8.1.16

    17. [17]

      (23) Freed, C. R.;Wang, C. H.; U2Prichcrd, D. C.Hypertension 1984, 6, II34. (24) Robertson, D.; Tung, C. S.; ldberg, M. R.; Hollister, A. S.; Gerkens, J. F.; Oates, J. A. Hypertension 1984, 6, 45. (25) Korner, P. I.; Head, G. A.; Bobik, A.; Badoer, E.; Aberdeen, J. A. Hypertension 1984, 6, 63. (26) Marrink, S. J.; Berendsen, H. J. C. J. Phys. Chem. 1994, 98, 4155. doi: 10.1021/j100066a040

    18. [18]

      (27) Marrink, S. J.; Jaehnig, F.; Berendsen, H. J. C. Biophys. J. 1996, 71, 632. doi: 10.1016/S0006-3495(96)79264-0

    19. [19]

      (28) Zahn, D.; Brickmann, J. Chem. Phys. Lett. 2002, 352, 441. doi: 10.1016/S0009-2614(01)01437-3

    20. [20]

      (29) Bemporad, D.; Essex, J.W.; Luttmann, C. J. Phys. Chem. B 2004, 108, 4875. doi: 10.1021/jp035260s

    21. [21]

      (30) Shinoda,W.; Mikami, M.; Baba, T.; Hato, M. J. Phys. Chem. B 2004, 108, 9346. doi: 10.1021/jp035998+

    22. [22]

      (31) Nichols, J.W.; Deamer, D.W. Proc. Nat. Acad. Sci. U. S. A. 1980, 77, 2038. doi: 10.1073/pnas.77.4.2038

    23. [23]

      (32) Benga, G.; Pop, V. I.; Popescu, O.; Borza, V. J. Biochem. Biophys. Methods 1990, 21, 87. doi: 10.1016/0165-022X(90)90057-J

    24. [24]

      (33) Jansen, M.; Blume, A. Biophys. J. 1995, 68, 997. doi: 10.1016/S0006-3495(95)80275-4

    25. [25]

      (34) Andrasko, J.; Forsén, S. Biochem. Biophys. Res. Commun. 1974, 60, 813. doi: 10.1016/0006-291X(74)90313-1

    26. [26]

      (35) Graziani, Y.; Livne, A. J. Membr. Biol. 1972, 7, 275. doi: 10.1007/BF01867920

    27. [27]

      (36) Khavrutskii, I. V.; rfe, A. A.; Lu, B.; McCammon, J. A. J. Am. Chem. Soc. 2009, 131, 1706. doi: 10.1021/ja8081704

    28. [28]

      (37) Papahadjopoulos, D.; Nir, S.; Ohki, S. Biochim. Biophys. Acta 1972, 266, 561. doi: 10.1016/0005-2736(72)90354-9

    29. [29]

      (38) Zhang, J.W.; Bian, F. Y.; Shi, G. J.; Xu, S. C. Acta Phys. -Chim. Sin. 2014, 30 (1), 183. [张继伟, 卞福永, 施国军, 徐四川. 物理化学学报, 2014, 30 (1), 183.] doi: 10.3866/PKU.WHXB201311281

    30. [30]

      (39) Yang, F. Y. Biological Cell; Science Press: Beijing, 2005. [杨福愉. 生物膜. 北京: 科学出版社, 2005.] (40) Hoff, B.; Strandberg, E.; Ulrich, A. S.; Tieleman, D. P.; Posten, C. Biophys. J. 2005, 88, 1818. doi: 10.1529/biophysj.104.052399

    31. [31]

      (41) Janosi, L.; rfe, A. A. J. Chem. Theory Comput. 2010, 6, 3267. doi: 10.1021/ct100381g

    32. [32]

      (42) Su, Z. Y.;Wang, Y. T. J. Phys. Chem. B 2011, 115, 796. doi: 10.1021/jp107599v

    33. [33]

      (43) Dunkin, C. M.; Pokorny, A.; Almeida, P. F.; Lee, H. S. J. Phys. Chem. B 2011, 115, 1188. doi: 10.1021/jp107763b

    34. [34]

      (44) Chen, R.; Poger, D.; Mark, A. E. J. Phys. Chem. B 2011, 115, 1038. doi: 10.1021/jp110002q

    35. [35]

      (45) Merlino, A.; Vitiello, G.; Grimaldi, M.; Sica, F.; Busi, E.; Basosi, R.; D’Ursi, A. M.; Fragneto, G.; Paduano, L.; D’Errico, G. J. Phys. Chem. B 2012, 116, 401. doi: 10.1021/jp204781a

    36. [36]

      (46) Yamamoto, E.; Akimoto, T.; Shimizu, H.; Hirano, Y.; Yasui, M.; Yasuoka, K. J. Phys. Chem. B 2012, 116, 8989. (47) Polyansky, A. A.; Volynsky, P. E.; Nolde, D. E.; Arseniev, A. S.; Efremov, R. G. J. Phys. Chem. B 2005, 109, 15052. doi: 10.1021/jp0510185

    37. [37]

      (48) Puri, A.; Jang, H.; Yavlovich, A.; Masood, M. A.; Veenstra, T. D.; Luna, C.; Aranda-Espinoza, H.; Nussinov, R.; Blumenthal, R. Langmuir 2011, 27, 15120. doi: 10.1021/la203453x

    38. [38]

      (49) Manna, M.; Mukhopadhyay, C. Langmuir 2009, 25, 12235. doi: 10.1021/la902660q

    39. [39]

      (50) Hartshorn, M.; Jewett, C. M.; Brozik, J. A. Langmuir 2010, 26, 2609. doi: 10.1021/la904308g

    40. [40]

      (51) Mondal, S.; Mukhopadhyay, C. Langmuir 2008, 24, 10298. doi: 10.1021/la8015589

    41. [41]

      (52) Soemo, A. R.;Wirth, M. J. Langmuir 2010, 26, 2196. doi: 10.1021/la9038914

    42. [42]

      (53) Payandeh, J.; Gamal El-Din, T. M.; Scheuer, T.; Zheng, N.; Catterall,W. A. Nature 2012, 486, 135. (54) Jönsson, P.; Jonsson, M. P.; Höök, F. Nano Lett. 2010, 10, 1900. doi: 10.1021/nl100779k

    43. [43]

      (55) Carr, R.;Weinstock, I. A.; Sivaprasadarao, A.; Müller, A.; Aksimentiev, A. Nano Lett. 2008, 8, 3916. doi: 10.1021/nl802366k

    44. [44]

      (56) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren,W. F.; Hermans, J.; Pullman, B. J. Am. Chem. Soc. 2001, 123, 8638. doi: 10.1021/ja0159618

    45. [45]

      (57) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952. (58) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q

    46. [46]

      (59) Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. J. Comput. Chem. 2005, 26, 1701. (60) Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Comp. Phys. Commun. 1995, 91, 43. doi: 10.1016/0010-4655(95)00042-E

    47. [47]

      (61) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision E.01; Gaussian Inc.:Wallingford, CT, 2004. (62) Schuettelkopf, A.W.; van Aalten, D. M. F. Acta Crystallogr. 2004, D60, 1355. (63) Wang, Y.; Bian, F.; Deng, S. R.; Shi, Q.; Ge, M. F.;Wang, S.; Zhang, X. K.; Xu, S. C. Journal of Biomolecular Structure & Dynamics 2011, 28, 881. doi: 10.1080/07391102.2011.10508615

    48. [48]

      (64) Xu, S. C.; Chi, S. M.; Jin, Y.; Shi, Q.; Ge, M. F.;Wang, S.; Zhang, X. K. J. Mol. Model. 2012, 18, 377. doi: 10.1007/s00894-011-1083-7

    49. [49]

      (65) Humphrey,W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5

    50. [50]

      (66) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18, 1463. (67) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089. doi: 10.1063/1.464397

    51. [51]

      (68) Essman, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. doi: 10.1063/1.470117

    52. [52]

      (69) Berendsen, H. J. C.; Postma, J. P. M.; Gunsteren,W. F.; Dinola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684. doi: 10.1063/1.448118

    53. [53]

      (70) Hub, J. S.; de Groot, B. L.; van der Spoel, D. J. Chem. Theory Comput. 2010, 6, 3713. doi: 10.1021/ct100494z

    54. [54]

      (71) Chiu, S.W.; Subramaniam, S.; Jakobsson, E. Biophys. J. 1999, 76, 1939. doi: 10.1016/S0006-3495(99)77353-4

    55. [55]

      (72) Erdtman, E.; dos Santos, D. J. V. A.; LÖfgren, L.; Eriksson, L. A. Chem. Phys. Lett. 2008, 463, 178. doi: 10.1016/j.cplett.2008.08.021

    56. [56]

      (73) Bauer, B. A.; Lucas, T. R.; Meninger, D. J.; Patel, S. Chem. Phys. Lett. 2011, 508, 289. doi: 10.1016/j.cplett.2011.04.052


  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(532)
  • Abstract views(729)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return