Citation: GU Jia-Fang, CHEN Wen-Kai. Adsorption of the Uranyl Ion on the Hydroxylated α-Quartz (101) Surface[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1810-1820. doi: 10.3866/PKU.WHXB201408221 shu

Adsorption of the Uranyl Ion on the Hydroxylated α-Quartz (101) Surface

  • Received Date: 13 May 2014
    Available Online: 22 August 2014

    Fund Project:

  • Uranyl ion adsorption on the hydroxylated α- quartz (101) surface was investigated by firstprinciples density functional theory calculations. We explicitly considered the first hydration shell of the uranyl ion for short-range solvent effects and used the conductor-like screening model (COSMO) for longrange solvent effects. Both the adsorption energies and electronic structures of the adsorption system indicated that the bidentate hydrated uranyl species were more stable than bidentate hydroxylated species, and bidentate adsorption of the uranyl ion on the bridge site of dia-Os1Os2 was the most stable adsorption model in the aqueous state. The large differences in the electronic structures of the two forms were mainly because of the different degree of bonding between uranium and the surface after adsorption, which makes the 5f orbital narrow and causes a red shift. Use of halogen ions in the uranyl coordination environment can adjust the band gap of the uranyl adsorption system.

  • 加载中
    1. [1]

      (1) Sandhu, S. S.; Kohli, K. B.; Brar, A. S. Inorg. Chem. 1984, 23, 3609. doi: 10.1021/ic00190a036

    2. [2]

      (2) Nieweg, J. A.; Lemma, K.; Trewyn, B. G.; Lin, V. S. Y.; Bakac, A. Inorg. Chem. 2005, 44, 5641. doi: 10.1021/ic050130e

    3. [3]

      (3) Wheeler, J.; Thomas, J. K. J. Phys. Chem. 1984, 88, 750. (4) Krishna, V.; Kamble, V. S.; Gupta, N. M.; Selvam, P. J. Phys. Chem. C 2008, 112, 15832. doi: 10.1021/jp802779e

    4. [4]

      (5) Stewart, B. D.; Mayes, M. A.; Fendorf, S. Environ. Sci. Technol. 2010, 44, 928. doi: 10.1021/es902194x

    5. [5]

      (6) Tang, Y.; Reeder, R. J. Environ. Sci. Technol. 2009, 43, 4446. doi: 10.1021/es802369m

    6. [6]

      (7) Tang, Y.; McDonald, J.; Reeder, R. J. Environ. Sci. Technol. 2009, 43, 4452. doi: 10.1021/es802370d

    7. [7]

      (8) Zhang, H. X.; Xie, Y. X.; Tao, Z. Y. Colloids. Surf. A 2005, 252, 1. doi: 10.1016/j.colsurfa.2004.10.005

    8. [8]

      (9) Singer, D. M.; Maher, K.; Brown, G. E., Jr. Geochim. Cosmochim. Acta 2009, 73, 5989. doi: 10.1016/j.gca.2009.07.002

    9. [9]

      (10) Greathouse, J. A.; Cygan, R. T. Environ. Sci. Technol. 2006, 40, 3865. doi: 10.1021/es052522q

    10. [10]

      (11) Froideval, A.; Del Nero, M.; Gaillard, C.; Barillon, R.; Rossini, I.; Hazemann, J. L. Geochim. Cosmochim. Ac. 2006, 70, 5270. doi: 10.1016/j.gca.2006.08.027

    11. [11]

      (12) Sylwester, E. R.; Hudson, E. A.; Allen, P. G. Geochim. Cosmochim. Ac. 2000, 64, 2431. doi: 10.1016/S0016-7037(00)00376-8

    12. [12]

      (13) Lefèvre, G.; Noinville, S.; Fédoroff, M. J. Colloid. Interf. Sci. 2006, 296, 608. doi: 10.1016/j.jcis.2005.09.016

    13. [13]

      (14) Chanda, M.; Rempel, G. L. React. Polym. 1989, 11, 71. doi: 10.1016/0923-1137(89)90084-5

    14. [14]

      (15) Comarmond, M. J.; Payne, T. E.; Harrison, J. J.; Thiruvoth, S.; Wong, H. K.; Aughterson, R. D.; Lumpkin, G. R.; Müller, K.; Foerstendorf, H. Environ. Sci. Technol. 2011, 45, 5536. doi: 10.1021/es201046x

    15. [15]

      (16) Drisko, G. L.; Chee Kimling, M.; Scales, N.; Ide, A.; Sizgek, E.; Caruso, R. A.; Luca, V. Langmuir 2010, 26, 17581. doi: 10.1021/la103177h

    16. [16]

      (17) Vandenborre, J.; Drot, R.; Simoni, E. Inorg. Chem. 2007, 46, 1291. doi: 10.1021/ic061783d

    17. [17]

      (18) Dossot, M.; Cremel, S.; Vandenborre, J.; Grausem, J.; Humbert, B.; Drot, R.; Simoni, E. Langmuir 2005, 22, 140. (19) Ordoñez-Regil, E.; Drot, R.; Simoni, E.; Ehrhardt, J. J. Langmuir 2002, 18, 7977. doi: 10.1021/la025674x

    18. [18]

      (20) Kremleva, A.; Krüger, S.; Rösch, N. Geochim. Cosmochim. Ac. 2011, 75, 706. doi: 10.1016/j.gca.2010.10.019

    19. [19]

      (21) Martorell, B.; Kremleva, A.; Krüger, S.; Rösch, N. J. Phys. Chem. C 2010, 114, 13287. doi: 10.1021/jp101300w

    20. [20]

      (22) Kremleva, A.; Krüger, S.; Rösch, N. Langmuir 2008, 24, 9515. doi: 10.1021/la801278j

    21. [21]

      (23) Payne, T. E.; Davis, J. A.; Lumpkin, G. R.; Chisari, R.;Waite, T. D. Appl. Clay. Sci. 2004, 26, 151. doi: 10.1016/j. clay.2003.08.013

    22. [22]

      (24) Glezakou, V. A.; deJong,W. A. J. Phys. Chem. A 2011, 115, 1257. (25) Moskaleva, L. V.; Nasluzov, V. A.; Rösch, N. Langmuir 2006, 22, 2141. doi: 10.1021/la052973o

    23. [23]

      (26) Perron, H.; Roques, J. R. m.; Domain, C.; Drot, R.; Simoni, E.; Catalette, H. Inorg. Chem. 2008, 47, 10991. doi: 10.1021/ic801246k

    24. [24]

      (27) Perron, H.; Domain, C.; Roques, J.; Drot, R.; Simoni, E.; Catalette, H. Inorg. Chem. 2006, 45, 6568. doi: 10.1021/ic0603914

    25. [25]

      (28) Levesque, M.; Roques, J.; Domain, C.; Perron, H.; Veilly, E.; Simoni, E.; Catalette, H. Surf. Sci. 2008, 602, 3331. doi: 10.1016/j.susc.2008.09.006

    26. [26]

      (29) Greathouse, J. A.; O'Brien, R. J.; Bemis, G.; Pabalan, R. T. J. Phys. Chem. B 2002, 106, 1646. (30) Boily, J. F.; Rosso, K. M. Phys. Chem. Chem. Phys. 2011, 13, 7845. doi: 10.1039/c0cp01406k

    27. [27]

      (31) Bandura, A. V.; Kubicki, J. D.; Sofo, J. O. J. Phys. Chem. C 2011, 115, 5756. doi: 10.1021/jp1106636

    28. [28]

      (32) Abbasi, A.; Nadimi, E.; Plänitz, P.; Radehaus, C. Surf. Sci. 2009, 603, 2502. doi: 10.1016/j.susc.2009.06.004

    29. [29]

      (33) Gu, J. F.; Lu, C. H.; Chen,W. K.; Xu, Y.; Zheng, J. D. Acta Phys. -Chim. Sin. 2009, 25, 655. [辜家芳, 陆春海, 陈文凯,许莹, 郑金德. 物理化学学报, 2009, 25, 655.] doi: 10.3866/PKU.WHXB20090419

    30. [30]

      (34) Gu, J. F.; Man, M. L.; Lu, C. H.; Chen,W. K. Chin. J. Inorg. Chem. 2012, 7, 1324. [辜家芳, 满梅玲, 陆春海, 陈文凯. 无机化学学报, 2012, 7, 1324.] (35) Gu, J. F.; Lu, C. H.; Chen,W. K.; Chen, Y.; Xu, K.; Huang, X.; Zheng, Y. F. Acta Phys. -Chim. Sin. 2012, 28, 792. [辜家芳, 陆春海, 陈文凯, 陈勇, 许可, 黄昕, 章永凡. 物理化学学报, 2012, 28, 792.] doi: 10.3866/PKU.WHXB201201171

    31. [31]

      (36) Bargar, J. R.; Reitmeyer, R.; Lenhart, J. J.; Davis, J. A. Geochim. Cosmochim. Ac. 2000, 64, 2737. doi: 10.1016/S0016-7037(00)00398-7

    32. [32]

      (37) Delley, B. J. Chem. Phys. 1990, 92, 508. (38) Delley, B. J. Chem. Phys. 2000, 113, 7756. (39) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244

    33. [33]

      (40) Perdew, J. P.;Wang, Y. Phys. Rev. B 1986, 33, 8800. doi: 10.1103/PhysRevB.33.8800

    34. [34]

      (41) Sauer, J. Modeling of Structure and Reactivity in Zeolites; Academic Press: London, 1992. (42) Benedek, N. A.; Snook, I. K.; Latham, K.; Yarovsky, I. J. Chem. Phys. 2005, 122, 144102. (43) umans, T. P. M.;Wander, A.; Brown,W. A.; Catlow, C. R. A. Phys. Chem. Chem. Phys. 2007, 9, 2146. doi: 10.1039/b701176h

    35. [35]

      (44) Yang, J.;Wang, E. G. Phys. Rev. B 2006, 73, 035406. doi: 10.1103/PhysRevB.73.035406

    36. [36]

      (45) Yang, J.; Meng, S.; Xu, L.;Wang, E. G. Phys. Rev. B 2005, 71, 035413. doi: 10.1103/PhysRevB.71.035413

    37. [37]

      (46) Murashov, V. V.; Demchuk, E. J. Phys. Chem. B 2005, 109, 10835. (47) de Leeuw, N. H.; Higgins, F. M.; Parker, S. C. J. Phys. Chem. B 1999, 103, 1270. (48) Tsushima, S.; Suzuki, A. J. Mol. Struct. 1999, 487, 33. doi: 10.1016/S0166-1280(99)00137-2

    38. [38]

      (49) Spencer, S.; Gagliardi, L.; Handy, N. C.; Ioannou, A. G.; Skylaris, C. K.;Willetts, A.; Simper, A. M. J. Phys. Chem. A 1999, 103, 1831. (50) Reich, T.; Moll, H.; Arnold, T.; Denecke, M. A.; Hennig, C.; Geipel, G.; Bernhard, G.; Nitsche, H.; Allen, P. G.; Bucher, J. J.; Edelstein, N. M.; Shuh, D. K. J. Electron. Spectrosc. 1998, 96, 237. doi: 10.1016/S0368-2048(98)00242-4

    39. [39]

      (51) Michard, P.; Guibal, E.; Vincent, T.; Le Cloirec, P. Micro. Mater. 1996, 5, 309. doi: 10.1016/0927-6513(95)00067-4


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    6. [6]

      Ping Cai Yaxian Zhu Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    9. [9]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    10. [10]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    11. [11]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    15. [15]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    16. [16]

      Juan Yang . Construction of General Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 8-13. doi: 10.12461/PKU.DXHX202408026

    17. [17]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(532)
  • Abstract views(767)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return