Citation: ZHANG Lan, WEI Ji-Ying, ZHAO Xuan, LI Fu-Zhi, JIANG Feng. Preparation, Characterization and Sr(Ⅱ) Adsorption Performance of Self-Doped Antimony Oxide[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1923-1931. doi: 10.3866/PKU.WHXB201408201 shu

Preparation, Characterization and Sr(Ⅱ) Adsorption Performance of Self-Doped Antimony Oxide

  • Received Date: 26 May 2014
    Available Online: 20 August 2014

    Fund Project:

  • 90Sr is an important radionuclide that needs to be removed from radioactive waste water (RWW) in nuclear power plants (NPP) prior to its discharge into the environment. Hydrous antimony oxide is a type of selective adsorbent for Sr(Ⅱ) ions, especially in acid solution. In this paper, a series of self-doped hydrous antimony oxides Sb(Ⅲ)/Sb2O5 were prepared by a two-step process in an absolute alcohol solvent, using antimony trichloride as a stable and low-toxic antimony source and H2O2 solution as an oxidant. UV radiation was used to enhance the oxidation rate of Sb(Ⅲ). The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy analyses, and the effect of the preparation conditions on the composition and structure of the products are discussed. Batch adsorption experiments were performed to study the relationship between the Sb(Ⅲ)/Sb(total) ratio in the oxide adsorbent and the Sr(Ⅱ) adsorption activity. Moreover, the influence of the initial pH of the waste water was investigated. The results showed that Sb(Ⅲ) ions can coexist with Sb(V) and form the solid solution of Sb(Ⅲ)/Sb2O5 with cubic pyrochlore structure. Materials with different Sb(Ⅲ)/Sb(total) ratios can be obtained by choosing different alcohols as the solvent and a suitable mixing method of the reactants, as well as by changing the reaction temperature during the oxidation process. Among the as- prepared Sb(Ⅲ)/Sb2O5 adsorbents, the sample with a Sb(Ⅲ)/Sb(total) ratio of 49.8% showed the best Sr(Ⅱ) adsorption performance, and the distribution coefficients of Sr(Ⅱ) was about 6.6×107 mL·g-1. This hydrous antimony oxide showed favorable performance in the wide pH value of pH=3-13. In addition, Sr(Ⅱ) adsorption on the as-prepared material fitted the Langmuir model very well under the conditions studied.

  • 
    1. [1]

      (1) Lehto, J.; Harjula, R. Radiochim. Acta 1999, 86 (1-2), 65. (2) Vesterbacka, P.; Hamalainen, K. Radiochim. Acta 2005, 93 (5), 291. (3) Kuronen, M.; Harjula, R. Radiochim. Acta 2005, 93 (2), 119. (4) Koivula, R.; Harjula, R. Sep. Sci. Technol. 2003, 38 (15), 3795. doi: 10.1081/SS-120024231

    2. [2]

      (5) Harjula, R.; Lehtoa, J.; Paajanena, A.; Tusab, E.; Yarnell, P. React. Funct. Polym. 2004, 60, 85. doi: 10.1016/j.reactfunctpolym.2004.02.014

    3. [3]

      (6) Möller, T.; Harjula, R.; Lehto, J. Sep. Sci. Technol. 2002, 28 (1), 13. (7) Liu, H. D.; Li, F. Z.; Zhao, X.; Yun, G. C. Nucl. Technol. 2009, 165, 200. (8) Tel, H.; Alta, Y.; Eral, M.; Sert, E.; Etinkaya, B.; Nan, S. Chem. Eng. J. 2010, 161 (1-2), 151. (9) Gürbo?a, G.; Tel, H. J. Hazard. Mater. 2005, 120 (1-3), 135. doi: 10.1016/j.jhazmat.2004.12.037

    4. [4]

      (10) ?nan, S.; Alta?, Y. Chem. Eng. J. 2011, 168 (3), 1263. (11) Guan,W.; Pan, J.; Ou, H.;Wang, X.; Zou, X.; Hu,W.; Li, C.; Wu, X. Chem. Eng. J. 2011, 167 (1), 215. doi: 10.1016/j.cej.2010.12.025

    5. [5]

      (12) Thoro od, G. J.; Kennedy, B. J.; Avdeev, M.; Peterson, V. K.; Hanna, J. V.; Luca, V. J. Phys. Chem. Solids 2011, 72 (6), 692. (13) Möller, T.; Clearfield, A.; Harjula, R. Microporous Mesoporous Mat. 2002, 54 (1-2), 187. doi: 10.1016/S1387-1811(02)00320-7

    6. [6]

      (14) Cakir, P.; Inan, S.; Altas, Y. J. Hazard. Mater. 2014, 271, 108. doi: 10.1016/j.jhazmat.2014.02.014

    7. [7]

      (15) Möller, T.; Harjula, R.; Pillinger, M.; Dyer, A.; Newton, J.; Tusa, E.; Amin, S.;Webb, M.; Araya, A. J. Mater. Chem. 2001, 11 (5), 1526. (16) Möller, T.; Harjula, R.; Kelokaski, P.; Vaaramaa, K.; Karhu, P.; Lehto, J. J. Mater. Chem. 2003, 13 (3), 535. (17) Ali, I. M. Chem. Eng. J. 2009, 155 (3), 580. doi: 10.1016/j.cej.2009.07.050

    8. [8]

      (18) Abe, M.; Ito, t. Bull. Chem. Soc. Jpn. 1968, 41, 2366. doi: 10.1246/bcsj.41.2366

    9. [9]

      (19) Zhang,W.; Li, P.; Xu, H.; Sun, R.; Qing, P.; Zhang, Y. J. Hazard. Mater. 2014, 268, 273. doi: 10.1016/j.jhazmat.2014.01.016

    10. [10]

      (20) Gurgul, J.; Rinke, M. T.; Schellenberg, I.; Pöttgen, R. Solid State Sci. 2013, 17, 122. doi: 10.1016/j.solidstatesciences.2012.11.014

    11. [11]

      (21) Han, G. Z.; Zhang, C.; Gao, J. G.; Qian, P. Acta Phys. -Chim. Sin. 2011, 27 (6), 1361. [韩光占, 张超, 高吉刚, 钱萍. 物理化学学报, 2011, 27 (6), 1361.] doi: 10.3866/PKU.WHXB20110612

    12. [12]

      (22) Yang, F. Chinese Journal of Aeronautics 2007, 20 (2), 181. doi: 10.1016/S1000-9361(07)60030-2

    13. [13]

      (23) Zheng, G. Q.; Zhi, B.; Chen, J. Z. The Chinese Journal of Nonferrous Metals 2006, 16 (9), 1628. [郑国渠, 支波, 陈进中. 中国有色金属学报, 2006, 16 (9), 1628.] (24) Sangvanich, T.; Sukwarotwat, V.;Wiacek, R. J.; Grudzien, R. M.; Fryxell, G. E.; Addleman, R. S.; Timchalk, C.; Yantasee,W. J. Hazard. Mater. 2010, 182 (1-3), 225. doi: 10.1016/j.jhazmat.2010.06.019

    14. [14]

      (25) Park, Y.; Lee, Y.; Shin,W. S.; Choi, S. Chem. Eng. J. 2010, 162(2), 685. doi: 10.1016/j.cej.2010.06.026

    15. [15]

      (26) Rahman, R. O. A.; Ibrahim, H. A.; Hanafy, M.; Monem, N. M. A. Chem. Eng. J. 2010, 157 (1), 100. doi: 10.1016/j.cej.2009.10.057

    16. [16]

      (27) Smi?iklas, I.; Dimovi?, S.; Ple?aš, I. Appl. Clay Sci. 2007, 35 (1-2), 139. doi: 10.1016/j.clay.2006.08.004

    17. [17]

      (28) Tan, S.; Chen, X.; Ye, Y.; Sun, J.; Dai, L.; Ding, Q. J. Hazard. Mater. 2010, 179 (1-3), 559. doi: 10.1016/j.jhazmat.2010.03.040

    18. [18]

      (29) Inan, S.; Nostar, E. Sep. Sci. Technol. 2013, 48 (9), 1364. doi: 10.1080/01496395.2012.732980

    19. [19]

      (30) Appel, C.; Ma, L. Q.; Dean Rhue, R.; Kennelley, E. Geoderma 2003, 113 (1-2), 77. doi: 10.1016/S0016-7061(02)00316-6


    1. [1]

      (1) Lehto, J.; Harjula, R. Radiochim. Acta 1999, 86 (1-2), 65. (2) Vesterbacka, P.; Hamalainen, K. Radiochim. Acta 2005, 93 (5), 291. (3) Kuronen, M.; Harjula, R. Radiochim. Acta 2005, 93 (2), 119. (4) Koivula, R.; Harjula, R. Sep. Sci. Technol. 2003, 38 (15), 3795. doi: 10.1081/SS-120024231

    2. [2]

      (5) Harjula, R.; Lehtoa, J.; Paajanena, A.; Tusab, E.; Yarnell, P. React. Funct. Polym. 2004, 60, 85. doi: 10.1016/j.reactfunctpolym.2004.02.014

    3. [3]

      (6) Möller, T.; Harjula, R.; Lehto, J. Sep. Sci. Technol. 2002, 28 (1), 13. (7) Liu, H. D.; Li, F. Z.; Zhao, X.; Yun, G. C. Nucl. Technol. 2009, 165, 200. (8) Tel, H.; Alta, Y.; Eral, M.; Sert, E.; Etinkaya, B.; Nan, S. Chem. Eng. J. 2010, 161 (1-2), 151. (9) Gürbo?a, G.; Tel, H. J. Hazard. Mater. 2005, 120 (1-3), 135. doi: 10.1016/j.jhazmat.2004.12.037

    4. [4]

      (10) ?nan, S.; Alta?, Y. Chem. Eng. J. 2011, 168 (3), 1263. (11) Guan,W.; Pan, J.; Ou, H.;Wang, X.; Zou, X.; Hu,W.; Li, C.; Wu, X. Chem. Eng. J. 2011, 167 (1), 215. doi: 10.1016/j.cej.2010.12.025

    5. [5]

      (12) Thoro od, G. J.; Kennedy, B. J.; Avdeev, M.; Peterson, V. K.; Hanna, J. V.; Luca, V. J. Phys. Chem. Solids 2011, 72 (6), 692. (13) Möller, T.; Clearfield, A.; Harjula, R. Microporous Mesoporous Mat. 2002, 54 (1-2), 187. doi: 10.1016/S1387-1811(02)00320-7

    6. [6]

      (14) Cakir, P.; Inan, S.; Altas, Y. J. Hazard. Mater. 2014, 271, 108. doi: 10.1016/j.jhazmat.2014.02.014

    7. [7]

      (15) Möller, T.; Harjula, R.; Pillinger, M.; Dyer, A.; Newton, J.; Tusa, E.; Amin, S.;Webb, M.; Araya, A. J. Mater. Chem. 2001, 11 (5), 1526. (16) Möller, T.; Harjula, R.; Kelokaski, P.; Vaaramaa, K.; Karhu, P.; Lehto, J. J. Mater. Chem. 2003, 13 (3), 535. (17) Ali, I. M. Chem. Eng. J. 2009, 155 (3), 580. doi: 10.1016/j.cej.2009.07.050

    8. [8]

      (18) Abe, M.; Ito, t. Bull. Chem. Soc. Jpn. 1968, 41, 2366. doi: 10.1246/bcsj.41.2366

    9. [9]

      (19) Zhang,W.; Li, P.; Xu, H.; Sun, R.; Qing, P.; Zhang, Y. J. Hazard. Mater. 2014, 268, 273. doi: 10.1016/j.jhazmat.2014.01.016

    10. [10]

      (20) Gurgul, J.; Rinke, M. T.; Schellenberg, I.; Pöttgen, R. Solid State Sci. 2013, 17, 122. doi: 10.1016/j.solidstatesciences.2012.11.014

    11. [11]

      (21) Han, G. Z.; Zhang, C.; Gao, J. G.; Qian, P. Acta Phys. -Chim. Sin. 2011, 27 (6), 1361. [韩光占, 张超, 高吉刚, 钱萍. 物理化学学报, 2011, 27 (6), 1361.] doi: 10.3866/PKU.WHXB20110612

    12. [12]

      (22) Yang, F. Chinese Journal of Aeronautics 2007, 20 (2), 181. doi: 10.1016/S1000-9361(07)60030-2

    13. [13]

      (23) Zheng, G. Q.; Zhi, B.; Chen, J. Z. The Chinese Journal of Nonferrous Metals 2006, 16 (9), 1628. [郑国渠, 支波, 陈进中. 中国有色金属学报, 2006, 16 (9), 1628.] (24) Sangvanich, T.; Sukwarotwat, V.;Wiacek, R. J.; Grudzien, R. M.; Fryxell, G. E.; Addleman, R. S.; Timchalk, C.; Yantasee,W. J. Hazard. Mater. 2010, 182 (1-3), 225. doi: 10.1016/j.jhazmat.2010.06.019

    14. [14]

      (25) Park, Y.; Lee, Y.; Shin,W. S.; Choi, S. Chem. Eng. J. 2010, 162(2), 685. doi: 10.1016/j.cej.2010.06.026

    15. [15]

      (26) Rahman, R. O. A.; Ibrahim, H. A.; Hanafy, M.; Monem, N. M. A. Chem. Eng. J. 2010, 157 (1), 100. doi: 10.1016/j.cej.2009.10.057

    16. [16]

      (27) Smi?iklas, I.; Dimovi?, S.; Ple?aš, I. Appl. Clay Sci. 2007, 35 (1-2), 139. doi: 10.1016/j.clay.2006.08.004

    17. [17]

      (28) Tan, S.; Chen, X.; Ye, Y.; Sun, J.; Dai, L.; Ding, Q. J. Hazard. Mater. 2010, 179 (1-3), 559. doi: 10.1016/j.jhazmat.2010.03.040

    18. [18]

      (29) Inan, S.; Nostar, E. Sep. Sci. Technol. 2013, 48 (9), 1364. doi: 10.1080/01496395.2012.732980

    19. [19]

      (30) Appel, C.; Ma, L. Q.; Dean Rhue, R.; Kennelley, E. Geoderma 2003, 113 (1-2), 77. doi: 10.1016/S0016-7061(02)00316-6


  • 加载中
    1. [1]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    2. [2]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    3. [3]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    20. [20]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

Metrics
  • PDF Downloads(271)
  • Abstract views(489)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return