Citation: YANG Jian-Hui, JI Jia-Lin, LI Lin, WEI Shi-Hao. Hydrogen Chemisorption and Physisorption on the Two-Dimensional TiC Sheet Surface[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1821-1826. doi: 10.3866/PKU.WHXB201408192
-
The TiC monolayer sheet, a new two-dimensional structure, is proposed as a promising hydrogen storage material because of its high specific surface area and the large number of exposed Ti ions on the surface. First principles calculations showed that both chemisorption and physisorption of H2 can take place on the TiC sheet surface, with adsorption energies of 0.36 and 0.09 eV per H2, respectively. For 1 and 1/4 monolayer (ML) coverages, the dissociation barriers of H2 on the TiC sheet surface were calculated to be 1.12 and 0.33 eV, respectively. Thus, as well as physisorption and chemisorption, there were dissociated H atoms on the TiC sheet surface. The maximum H2 storage capacity was calculated to be up to 7.69% (mass fraction). The capacities were 1.54%, 3.07%, and 3.07% for dissociated H atoms, and chemisorption and physisorption of H2, respectively. Considering only Kubas adsorption, the hydrogen storage capacity was 3.07%. The adsorption energy for H2 chemisorption on the TiC sheet surface only slightly changed at different coverages, which benefits the storage and release of H2.
-
-
[1]
(1) Jena, P. J. Phys. Chem. Lett. 2011, 2, 206. (2) Wigley, T. M. L.; Richels, R.; Edmonds, J. A. Nature 1996, 379, 240. doi: 10.1038/379240a0
-
[2]
(3) Schlapbach, L.; Zuttel, A. Nature 2001, 414, 353. doi: 10.1038/35104634
-
[3]
(4) Zhang, H.; Xiao, M. Z.; Zhang, G. Y.; Lu, G. X.; Zhu, S. L. Acta Phys. Sin. 2011, 60, 026103. [张辉, 肖明珠, 张国英, 路广霞, 朱圣龙. 物理学报, 2011, 60, 026103.] (5) Bhatia, S. K.; Myers, A. L. Langmuir 2006, 22, 1688. doi: 10.1021/la0523816
-
[4]
(6) Kubas, G. J. Chem. Rev. 2007, 107, 4152. (7) Cheng, H.; Sha, X.; Chen, L.; Cooper, A. C.; Foo, M. L.; Lau, G. C.; Bailey Iii,W. H.; Pez, G. P. J. Am. Chem. Soc. 2009, 131, 17732. doi: 10.1021/ja907232y
-
[5]
(8) Srinivas, G.; Zhu, Y.; Piner, R.; Skipper, N.; Ellerby, M.; Ruoff, R. Carbon 2010, 48, 630. doi: 10.1016/j.carbon.2009.10.003
-
[6]
(9) Chen, L.; Cooper, A.; Pez, G.; Cheng, H. J. Phys. Chem. C 2007, 111, 18995. doi: 10.1021/jp074920g
-
[7]
(10) Chen, B.; Li, B.; Chen, L. Appl. Phys. Lett. 2008, 93, 043104. doi: 10.1063/1.2958237
-
[8]
(11) Chen, L. A.; Zhou, C. G.;Wu, J. P.; Cheng, H. S. Front. Phys. China 2009, 4, 356. doi: 10.1007/s11467-009-0050-6
-
[9]
(12) Reshak, A. H.; Shalaginov, M. Y.; Saeed, Y.; Kityk, I. V.; Auluck, S. J. Phys. Chem. B 2011, 115, 2836. (13) Fukuzumi, S.; Suenobu, T. Dalton Trans. 2013, 42, 18. doi: 10.1039/c2dt31823g
-
[10]
(14) Kim, J.; Han, K.; Hwang, K.; Kim, B.; Kang, Y. Int. J. Hydrog. Energy 2013, 38, 6215. doi: 10.1016/j.ijhydene.2012.12.023
-
[11]
(15) Ma, L. J.;Wang, J. F.; Jia, J. F.;Wu, H. S. Acta Phys. -Chim. Sin. 2012, 28, 1854. [马丽娟, 王剑锋, 贾建峰, 武海顺. 物理化学学报, 2012, 28, 1854.] doi: 10.3866/PKU.WHXB201205151
-
[12]
(16) Lan, Z. Q.; Xiao, X.; Su, X.; Chen, J. S.; Guo, J. Acta Phys. -Chim. Sin. 2012, 28, 1877. [蓝志强, 肖潇, 苏鑫, 陈捷狮, 郭进. 物理化学学报, 2012, 28, 1877.] doi: 10.3866/PKU.WHXB201205281
-
[13]
(17) Yang, M.; Han, C.; Ni, G.;Wu, J. Cheng, H. Int. J. Hydrog. Energy 2012, 37, 12839. doi: 10.1016/j.ijhydene.2012.05.092
-
[14]
(18) Rowsell, J. L. C.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 1304. doi: 10.1021/ja056639q
-
[15]
(19) Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, P. K.; Pastre, J. J. Math. Chem. 2006, 16, 626. (20) Lin, K.; Adhikari, A.; Ku, C.; Chiang, C.; Kuo, H. Int. J. Hydrog. Energy 2012, 37, 13865. doi: 10.1016/j.ijhydene.2012.04.105
-
[16]
(21) Wu, X. J.; Zheng, J.; Li, J.; Cai,W. Q. Acta Phys. -Chim. Sin. 2013, 29, 2207. [吴选军, 郑佶, 李江, 蔡卫权. 物理化学学报, 2013, 29, 2207.] doi: 10.3866/PKU.WHXB201307191
-
[17]
(22) Wang, T.; Zhang, Q.; Ma, B.; Chen, H.; Chen, L. Int. J. Hydrog. Energy 2012, 37, 5081. doi: 10.1016/j.ijhydene.2011.12.065
-
[18]
(23) Tao, S. X.; Notten, P. H. L.; van Santen, R. A.; Jansen, A. P. J. Phys. Rev. B 2010, 82, 5. (24) Fair, K. M.; Cui, X. Y.; Li, L.; Shieh, C. C.; Zheng, R. K.; Liu, Z.W.; Delley, B.; Ford, M. J.; Ringer, S. P.; Stampfl, C. Phys. Rev. B 2013, 87, 014102. doi: 10.1103/PhysRevB.87.014102
-
[19]
(25) Sun, Q.;Wang, Q.; Jena, P.; Kawazoe, Y. J. Am. Chem. Soc. 2005, 127, 14582. doi: 10.1021/ja0550125
-
[20]
(26) Wang, Y.; Liu, J. H.;Wang, K.; Chen, T.; Tan, X.; Li, C. M. Int. J. Hydrog. Energy 2011, 36, 12950. doi: 10.1016/j.ijhydene.2011.07.034
-
[21]
(27) Hong,W.; Kim, B.; Lee, S.; Yu, H.; Yun, Y.; Jun, Y.; Lee, J.; Kim, H. Int. J. Hydrog. Energy 2012, 37, 7594. doi: 10.1016/j.ijhydene.2012.02.010
-
[22]
(28) Lu, J. L.; Cao, J. X. Acta Phys. Sin. 2012, 61, 148801. [卢金炼, 曹觉先. 物理学报, 2012, 61, 148801.] (29) Grin z, A.; Glandut, N.; Valette, S. Electrochem. Commun. 2009, 11, 2044. doi: 10.1016/j.elecom.2009.08.049
-
[23]
(30) Ding, H. M.; Fan, X. L.; Li, C. Y.; Liu, X. F.; Jiang, D.;Wang, C. Y. J. Alloy. Compd. 2013, 551, 67. doi: 10.1016/j.jallcom.2012.10.067
-
[24]
(31) Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; tsi, Y.; Barsoum, M.W. ACS Nano 2012, 6, 1322. doi: 10.1021/nn204153h
-
[25]
(32) Hu, Q. K.; Sun, D. D.;Wu, Q. H.;Wang, H. Y.;Wang, L. B.; Liu, B. Z.; Zhou, A. G.; He, J. L. J. Phys. Chem. A 2013, 117, 14253. (33) Zhang, Z.; Liu, X.; Yakobson, B. I.; Guo,W. J. Am. Chem. Soc. 2012, 134, 19326. doi: 10.1021/ja308576g
-
[26]
(34) Barsoum, M.W.; Ali, M.; El-Raghy, T. Metall. Mater. Trans. A 2000, 31, 1857. doi: 10.1007/s11661-006-0243-3
-
[27]
(35) Grimme, S. J. Comput. Chem. 2006, 27, 1787. (36) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
-
[28]
(37) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
-
[29]
(38) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251
-
[30]
(39) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396. (40) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
-
[31]
(41) Blochl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
-
[32]
(42) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
-
[33]
(43) Henkelman, G.; Jonsson, H. J. Chem. Phys. 2000, 113, 9978. (44) Henkelman, G.; Jonsson, H. J. Chem. Phys. 1999, 111, 7010. (45) Ao, Z. M.; Hernandez-Nieves, A. D.; Peeters, F. M.; Li, S. Phys. Chem. Chem. Phys. 2012, 14, 1463. (46) Reunchan, P.; Jhi, S. H. Appl. Phys. Lett. 2011, 98, 093103. doi: 10.1063/1.3560468
-
[34]
(47) Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. J. Comput. Chem. 2007, 28, 899. (48) Florez, E.; mez, T.; Liu, P.; Rodriguez, J. A.; Illas, F. ChemCatChem 2010, 2, 1219. doi: 10.1002/cctc.v2:10
-
[35]
(49) Costanzo, F.; Silvestrelli, P. L.; Ancilotto, F. J. Chem. Theory Comput. 2012, 8, 1288.
-
[1]
-
-
[1]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[2]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[3]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[4]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[5]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[6]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[7]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[8]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[9]
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
-
[10]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[11]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[12]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[13]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[14]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[15]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[16]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[17]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[18]
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
-
[19]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[20]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[1]
Metrics
- PDF Downloads(491)
- Abstract views(502)
- HTML views(9)