Citation: LI Jiang-Bing, MA Hong-Fang, ZHANG Hai-Tao, SUN Qi-Wen, YING Wei-Yong, FANG Ding-Ye. Comparison of FeMn, FeMnNa and FeMnK Catalysts for the Preparation of Light Olefins from Syngas[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1932-1940. doi: 10.3866/PKU.WHXB201408051
-
The influence of sodium and potassium promoters on the structure and reaction behavior of an FeMn catalyst toward light olefin synthesis from syngas was investigated by N2 adsorption, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), CO/CO2 temperature-programmed desorption (CO/CO2-TPD), Mössbauer spectroscopy (MES) and CO+H2 reaction. We found that an increase in manganese improves the dispersion of the active Fe component and light olefin selectivity; however, excessive enrichment with the Mn promoter on the catalyst surface suppresses CO conversion. Potassium and sodium inhibit the reduction of the catalyst in H2 and improve the adsorption of CO2 and CO because of the enhanced surface basicity of the catalysts. After reduction with syngas (nH2/nCO=20) and reaction with syngas (nH2/nCO=3.5), the analysis of the bulk structure was compared with those of the FeMn, FeMnNa, and FeMnK catalysts. The results show that FeCx is found in relatively high levels in the FeMnK catalysts because of the stronger alkalinity and adsorbability of CO. However, Fischer-Tropsch synthesis (FTS) results indicate that sodium and potassium improved the selectivity toward light olefins. The best catalytic performance was achieved by the FeMnNa catalyst. Its CO conversion and light olefins selectivity were 96.2% and 30.5% (molar fraction), respectively.
-
-
[1]
(1) Janardanarao, M. Ind. Eng. Chem. Res. 1990, 29, 1735. doi: 10.1021/ie00105a001
-
[2]
(2) Ma,W. P.; Ding, Y. J.; Luo, H. Y.; Lin, P. Z.; Lin, L.W. Chinese Journal of Catalysis 2001, 22, 279. [马文平, 丁云杰, 罗洪原, 林培滋, 林励吾. 催化学报, 2001, 22, 279.] (3) Mirzaei, A. A.; Habibpour, R.; Kashi, E. Appl. Catal. A-Gen. 2005, 296, 222. doi: 10.1016/j.apcata.2005.08.033
-
[3]
(4) Dry, M. E.; Shingles, T.; Botha, C. S. V. H. J. Catal. 1970, 17, 341. doi: 10.1016/0021-9517(70)90109-0
-
[4]
(5) Lohitharn, N.; odwin, J. G., Jr. J. Catal. 2008, 260, 7. doi: 10.1016/j.jcat.2008.08.011
-
[5]
(6) Botes, F. G.; vender, N. S. Energ. Fuel. 2007, 21, 3095. doi: 10.1021/ef7003464
-
[6]
(7) Ngantsoue-Hoc,W.; Zhang, Y. Q.; O’Brien, R. J.; Luo, M.; Davis, B. H. Appl. Catal. A-Gen. 2002, 236, 77. doi: 10.1016/S0926-860X(02)00278-8
-
[7]
(8) Wang, C.; Zhao, H. B.;Wang, H.; Liu, L. T.; Xiao, C. X.; Ma, D. Catal. Today 2012, 183, 143. doi: 10.1016/j.cattod.2011.10.020
-
[8]
(9) Dry, M. E.; Oosthuizen, G. J. J. Catal. 1968, 11, 18. doi: 10.1016/0021-9517(68)90004-3
-
[9]
(10) Yang, Y.; Xiang, H.W.; Xu, Y. Y.; Li, Y.W. Appl. Catal. A-Gen. 2004, 266, 181. doi: 10.1016/j.apcata.2004.02.018
-
[10]
(11) An, X.;Wu, B. S.; Hou,W. J.;Wan, H. J.; Tao, Z. C.; Li, T. Z.; Zhang, Z. X.; Xiang, H.W.; Li, Y.W.; Xu, B.; Yi, F. J. Mol. Catal. A: Chem. 2007, 263, 266. doi: 10.1016/j.molcata.2006.09.003
-
[11]
(12) Abbot, J.; Clark, N. J.; Baker, B. G. Appl. Catal. A-Gen. 1986, 26, 141. doi: 10.1016/S0166-9834(00)82547-6
-
[12]
(13) Galvis, H. M. T.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Dugulan, A. I.; Jong, K. P. D. Science 2012, 335, 835. doi: 10.1126/science.1215614
-
[13]
(14) Zhang, J. L.; Ma, L. H.; Fan, S. B.; Zhao, T. S.; Sun, Y. H. Fuel2013, 109, 116. doi: 10.1016/j.fuel.2012.12.081
-
[14]
(15) Qian,W. X.; Zhang, H. T.; Ying,W. Y.; Fang, D. Y. J. Nat. Gas Chem. 2011, 20, 389. doi: 10.1016/S1003-9953(10)60203-4
-
[15]
(16) Herranz, T.; Rojas, S.; Pérez-Alonso, F. J.; Ojeda, M.; Terreros, P.; Fierro, J. L. G. Appl. Catal. A-Gen. 2006, 311, 66. doi: 10.1016/j.apcata.2006.06.007
-
[16]
(17) Tao, Z. C.; Yang, Y.;Wan, H. J.; Li, T. Z.; An, X.; Xiang, H.W.; Li, Y.W. Catal. Lett. 2007, 114, 161. doi: 10.1007/s10562-007-9060-6
-
[17]
(18) Cao, C. J.; Liu, X. G.; Ju, X. R.; Chen, X. R. Acta Phys. -Chim. Sin. 2013, 29, 2475. [曹崇江, 刘晓庚, 鞠兴荣, 陈晓荣. 物理化学学报, 2013, 29, 2475.] doi: 10.3866/PKU.WHXB201310101
-
[18]
(19) Leith, I. R.; Howden, M. G. Appl. Catal. 1988, 37, 75. doi: 10.1016/S0166-9834(00)80752-6
-
[19]
(20) An, X.;Wu, B. S.;Wan, H. J.; Li, T. Z.; Tao, Z. C.; Xiang, H. W.; Li, Y.W. Catal. Commun. 2007, 8, 1957. doi: 10.1016/j.catcom.2007.03.016
-
[20]
(21) Wang, H. L.; Yang, Y.; Xu, J.;Wang, H.; Ding, M. Y.; Li, Y.W. J. Mol. Catal. A: Chem. 2010, 326, 29. doi: 10.1016/j.molcata.2010.04.009
-
[21]
(22) Motjope, T. R.; Dlamini, H. T.; Hearne, G. R.; Coville, N. J. Catal. Today 2002, 71, 335. doi: 10.1016/S0920-5861(01)00460-6
-
[22]
(23) Yang, Y.; Xiang, H.W.; Tian, L.;Wang, H.; Zhang, C. H.; Tao, Z. C.; Xu, Y. Y.; Zhong, B.; Li, Y.W. Appl. Catal. A-Gen. 2005, 284, 105. doi: 10.1016/j.apcata.2005.01.025
-
[23]
(24) Jung, H.; Thomson,W. J. J. Catal. 1992, 134, 654. doi: 10.1016/0021-9517(92)90350-Q
-
[24]
(25) Tao, Z. C.; Yang, Y.; Zhang, C. H.; Li, T. Z.;Wang, J. H.;Wan, H. J.; Xiang, H.W.; Li, Y.W. Catal. Commun. 2006, 7, 1061. (26) Dry, R. E.; Shingles, T.; Bboshoff, L. J.; Oosthuizen, G. J. J. Catal. 1969, 15, 190. doi: 10.1016/0021-9517(69)90023-2
-
[25]
(27) Miller, D. G.; Moskovits, M. The Journal of Physical Chemistry 1988, 92, 6081. doi: 10.1021/j100332a047
-
[26]
(28) Zhang, X. J.; Liu, Y.; Liu, G. Q.; Tao, K.; Jin, Q.; Meng, F. Z.; Wang, D.; Tsubaki, N. Fuel 2012, 92, 122. doi: 10.1016/j.fuel.2011.07.041
-
[1]
-
-
[1]
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
-
[2]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[3]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[4]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[5]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[6]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[7]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[8]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[9]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[10]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[11]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[12]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[13]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[14]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[15]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[16]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[17]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[18]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[19]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[20]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[1]
Metrics
- PDF Downloads(539)
- Abstract views(544)
- HTML views(4)