Citation: ZHANG You-Fa, WU Jie, YU Xin-Quan, LIANG Cai-Hua, WU Jun. Frost and Ice Transport on Superhydrophobic Copper Surfaces with Patterned Micro- and Nano-Structures[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1970-1978. doi: 10.3866/PKU.WHXB201408045 shu

Frost and Ice Transport on Superhydrophobic Copper Surfaces with Patterned Micro- and Nano-Structures

  • Received Date: 19 May 2014
    Available Online: 4 August 2014

    Fund Project:

  • Texture and wettability have an important influence on fogging, frosting, and icing on a metal surface. We fabricated micro- and nano-structure patterns on a copper surface by wire electrical discharge machining and subsequent chemical oxidation. By controlling the manufacturing process, three types of microstructure were machined: gratings, pillars, and pyramids. We then studied the wetting performance of the superhydrophobic surfaces with one-tier texture or two-tier texture and the corresponding transport of water in different phase states including fog, frost and icing and their melting processes. Two-tier roughness on the copper effectively improved the superhydrophobicity and retarded the formation and growth of frost. More importantly, these surfaces showed a long delayed icing time, even after several heating and cooling cycles, displaying od resistance to frost and icing. This can be well explained by an understanding of classical nucleation theory, Brown coalescence, and one-dimensional heat and mass transport.

  • 加载中
    1. [1]

      (1) Zhang, Y. F.; Yu, X. Q.;Wu, H.;Wu, J. Appl. Surf. Sci. 2012, 258 (20), 8253. (2) Zhang, Y. F.; Yu, X. Q.; Zhou, Q. H.; Li, K. N. Acta Phys. -Chim. Sin. 2010, 26 (5), 1457. [张友法, 余新泉, 周荃卉, 李康宁. 物理化学学报, 2010, 26 (5), 1457.] doi: 10.3866/PKU.WHXB20100532

    2. [2]

      (3) Zhang, Y. B.; Chen, Y.; Shi, L.; Li, J.; Guo, Z. G. J. Mater. Chem. 2012, 22 (3), 799. (4) Zhang, X.; Shi, F.; Niu, J.; Jiang, Y. G.;Wang, Z. Q. J. Mater. Chem. 2008, 18 (6), 621. (5) Li, K. Y.; Xu, S.; Chen, J.; Zhang, Q. L.; Zhang, Y. F.; Cui, D. P.; Zhou, X.;Wang, J. J.; Song, Y. L. Appl. Phys. Lett. 2014, 104, 101605. doi: 10.1063/1.4868255

    3. [3]

      (6) Zhu, L.; Xue, J.;Wang, Y. Y.; Chen, Q. M.; Ding, J. F.;Wang, Q. J. ACS Appl. Mater. Interface 2013, 5 (10), 4053. (7) Ruan, M.; Li,W.;Wang, B. S.; Deng, B.W.; Ma, F. M.; Yu, Z. L. Langmuir 2013, 29 (27), 8482. doi: 10.1021/la400979d

    4. [4]

      (8) Pang, Y. C.; Zhao, Y.; Feng, J. Chem. J. Chin. Univ. 2013, 34(4), 919. [庞艺川, 赵颖, 冯杰. 高等学校化学学报, 2013, 34 (4), 919.] (9) Miljkovic, N.;Wang, E. N. MRS Bull. 2013, 38 (5), 397. doi: 10.1557/mrs.2013.103

    5. [5]

      (10) Chen, X. M.; Ma, R. Y.; Zhou, H. B.; Zhou, X. F.; Che, L. F.; Yao, S. H.;Wang, Z. K. Sci. Rep. 2013, 3, 2515 (11) Cao, L. L.; Jones, A. K.; Sikka, V. K.;Wu, J. Z.; Gao, D. Langmuir 2009, 25 (21), 12444. doi: 10.1021/la902882b

    6. [6]

      (12) Feng, J.; Qin, Z. Q.; Yao, S. H. Langmuir 2012, 28 (14), 6067. doi: 10.1021/la300609f

    7. [7]

      (13) Guo, P.; Zheng, Y. M.;Wen, M. X.; Song, C.; Lin, Y. C.; Jiang, L. Adv. Mater. 2012, 24 (19), 2642. doi: 10.1002/adma.v24.19

    8. [8]

      (14) He, M.; Zhang, Q. L.; Zeng, X. P.; Cui, D. P.; Chen, J.; Li, H. L.;Wang, J. J.; Song, Y. L. Adv. Mater. 2013, 25 (16), 2291. (15) Jung, S.; Dorrestijn, M.; Raps, D.; Das, A.; Megaridis, C. M.; Poulikakos, D. Langmuir 2011, 27 (6), 3059. doi: 10.1021/la104762g

    9. [9]

      (16) Kim, K.; Lee, K. S. Int. J. Heat Mass Tran. 2011, 54 (13-14), 2758. doi: 10.1016/j.ijheatmasstransfer.2011.02.065

    10. [10]

      (17) Kim, P.;Wong, T. S.; Alvarenga, J.; Kreder, M. J.; Adorno-Martinez,W. E.; Aizenberg, J. ACS Nano 2012, 6 (8), 6569. doi: 10.1021/nn302310q

    11. [11]

      (18) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Acta Phys. -Chim. Sin. 2012, 28 (5), 1206. [刘天庆, 孙玮, 孙相彧, 艾宏儒. 物理化学学报, 2012, 28 (5), 1206.] doi: 10.3866/PKU.WHXB201202293

    12. [12]

      (19) Meuler, A. J.; McKinley, G. H.; Cohen, R. E. ACS Nano 2010, 4(12), 7048. doi: 10.1021/nn103214q

    13. [13]

      (20) Mishchenko, L.; Hatton, B.; Bahadur, V.; Taylor, J. A.; Krupenkin, T.; Aizenberg, J. ACS Nano 2010, 4 (12), 7699. doi: 10.1021/nn102557p

    14. [14]

      (21) Nosonovsky, M.; Hejazi, V. ACSNano 2012, 6 (10), 8488. (22) Rykaczewski, K.; Osborn,W. A.; Chinn, J.;Walker, M. L.; Scott, J. H. J.; Jones,W.; Hao, C. L.; Yao, S. H.;Wang, Z. K. Soft Matter 2012, 8 (33), 8786. doi: 10.1039/c2sm25502b

    15. [15]

      (23) Zhang, Y. F.; Yu, X. Q.; Zhou, Q. H.; Chen, F.; Li, K. N. Appl. Surf. Sci. 2010, 256 (6), 1883. (24) Zhang, Y. F.;Wu, J.; Yu, X. Q.;Wu, H. Appl. Surf. Sci. 2011, 257 (18), 7928. (25) Deng, X.; Mammen, L.; Zhao, Y. F.; Lellig, P.; Mullen, K.; Li, C.; Butt, H. J.; Vollmer, D. Adv. Mater. 2011, 23 (26), 2962. doi: 10.1002/adma.v23.26

    16. [16]

      (26) Xu, L. B.; Karunakaran, R. G.; Guo, J.; Yang, S. ACS Appl. Mater. Interface 2012, 4 (2), 1118. doi: 10.1021/am201750h

    17. [17]

      (27) Zhang, Y. F.; Ge, D. T.; Yang, S. J. Colloid. Interface Sci. 2014, 423, 101. doi: 10.1016/j.jcis.2014.02.024

    18. [18]

      (28) Bae,W. G.; Song, K. Y.; Rahmawan, Y.; Chu, C. N.; Kim, D.; Chung, D. K.; Suh, K. Y. ACS Appl. Mater. Interface 2012, 4(7), 3685. doi: 10.1021/am3007802

    19. [19]

      (29) Baldacchini, T.; Carey, J. E.; Zhou, M.; Mazur, E. Langmuir 2006, 22 (11), 4917. doi: 10.1021/la053374k

    20. [20]

      (30) Jagdheesh, R.; Pathiraj, B.; Karatay, E.; Romer, G. R. B. E.; in't Veldt, A. J. H. Langmuir 2011, 27 (13), 8464. doi: 10.1021/la2011088

    21. [21]

      (31) Kietzig, A. M.; Hatzikiriakos, S. G.; Englezos, P. Langmuir 2009, 25 (8), 4821. doi: 10.1021/la8037582

    22. [22]

      (32) Moradi, S.; Kamal, S.; Englezos, P.; Hatzikiriakos, S. G. Nanotechnology 2013, 24, 415302. doi: 10.1088/0957-4484/24/41/415302

    23. [23]

      (33) Shirtcliffe, N. J.; McHale, G.; Newton, M. I.; Chabrol, G.; Perry, C. C. Adv. Mater. 2004, 16 (21), 1929. (34) Baxter, A. C. S., 1944, 40, 546. (35) Wenzel, R. N. J. Phys. Colloid Chem. 1949, 53 (9), 1466. (36) Rahman, M. A.; Jacobi, A. M. Int. J. Heat Mass Tran. 2012, 55 (5-6), 1596. doi: 10.1016/j.ijheatmasstransfer.2011.11.015

    24. [24]

      (37) Tourkine, P.; Le Merrer, M.; Quere, D. Langmuir 2009, 25 (13), 7214. doi: 10.1021/la900929u

    25. [25]

      (38) Varanasi, K. K.; Deng, T.; Smith, J. D.; Hsu, M.; Bhate, N. Appl. Phys. Lett. 2010, 97, 234102. doi: 10.1063/1.3524513

    26. [26]

      (39) Varanasi, K. K.; Hsu, M.; Bhate, N.; Yang,W. S.; Deng, T. Appl. Phys. Lett. 2009, 95, 094101. (40) Xia, Y.; Zhong, Y.; Hrnjak, P. S.; Jacobi, A. M. Int. J. Refrig. 2006, 29 (7), 1066. doi: 10.1016/j.ijrefrig.2006.03.005


  • 加载中
    1. [1]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    2. [2]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    3. [3]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    4. [4]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    11. [11]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    12. [12]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    13. [13]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    17. [17]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    18. [18]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    19. [19]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    20. [20]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

Metrics
  • PDF Downloads(456)
  • Abstract views(627)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return