Citation:
LI Wen-Zhang, LIU Yang, LI Jie, YANG Ya-Hui, CHEN Qi-Yuan. Synthesis and Interfacial Electron Transfer of a Composite Film of Graphene and Tungsten Oxide[J]. Acta Physico-Chimica Sinica,
;2014, 30(10): 1957-1962.
doi:
10.3866/PKU.WHXB201408041
-
Composite films of graphene and tungsten oxide were fabricated by dip-coating with ammonium metatungstate as the precursor and polyvinylpyrrolidone as the bridging agent. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Photocurrent test, electrochemical impedance spectroscopy (EIS), transient photocurrent spectroscopy,and intensity-modulated photocurrent spectroscopy were used to study the transfer process and transport behavior of the charge carriers at the interface of the film electrodes. The results showed that the tungsten oxide nanoparticles were sufficiently composited with graphene. The efficiency of photoelectric conversion improved significantly. The transient constant and the electron-hole lifetime increased after the incorporation of graphene. The electron transit time of the composite film was reduced and was found to be only 47.5% of that of the tungsten oxide film.
-
-
-
[1]
(1) Pan, J. H.; Lee,W. I. Chem. Mater. 2006, 18, 847. doi: 10.1021/cm0522782
-
[2]
(2) Sivula, K.; Formal, F. L.; Grátzel, M. Chem. Mater. 2009, 21, 2862. doi: 10.1021/cm900565a
-
[3]
(3) Su, J.; Guo, L.; Bao, N.; Grimes, C. A. Nano Lett. 2011, 11, 1928. doi: 10.1021/nl2000743
-
[4]
(4) Jayaraman, S.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E.W. J. Phys. Chem. B 2005, 109, 22958. doi: 10.1021/jp053053h
-
[5]
(5) Cui, X.; Guo, L.; Cui, F.; He, Q.; Shi, J. J. Phys. Chem. C 2009, 113, 4134. (6) Xiang, Q.; Meng, G. F.; Zhao, H. B.; Zhang, Y.; Li, H.; Ma,W. J.; Xu, J. Q. J. Phys. Chem. C 2010, 114, 2049. doi: 10.1021/jp909742d
-
[6]
(7) Zheng, H.; Tachibana, Y.; Kalantar zadeh, K. Langmuir 2010, 26, 19148. doi: 10.1021/la103692y
-
[7]
(8) Chang, M. T.; Chou, L. J.; Chueh, Y. L.; Lee, Y. C.; Hsieh, C. H.; Chen, C. D.; Lan, Y.W.; Chen, L. J. Small 2007, 3, 658. (9) Cole, B.; Marsen, B.; Miller, E.; Yan, Y.; To, B.; Jones, K.; Al-Jassim, M. J. Phys. Chem. C 2008, 112, 5213. doi: 10.1021/jp077624c
-
[8]
(10) Long, M.; Cong, Y.; Li, X. K.; Cui, Z.W.; Dong, Z. J.; Yun, G. M. Acta Phys.-Chim. Sin 2013, 29, 1344. [龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 物理化学学报, 2013, 29, 1344.] doi: 10.3866/PKU.WHXB201303263
-
[9]
(11) Gan, Y. P.; Qin, H. P.; Huang, H.; Tao, X. Y.; Fang, J.W.; Zhang, W. K. Acta Phys. -Chim. Sin. 2013, 29, 403. [甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 物理化学学报, 2013, 29, 403.] doi: 10.3866/PKU.WHXB201211022
-
[10]
(12) Zhang, J.; Xiong, Z.; Zhao, X. S. J. Mater. Chem. 2011, 21, 3634. doi: 10.1039/c0jm03827j
-
[11]
(13) Li, B.; Cao, H. J. Mater. Chem. 2011, 21, 3346. doi: 10.1039/c0jm03253k
-
[12]
(14) Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Nano Lett. 2012, 12, 6464. doi: 10.1021/nl303961c
-
[13]
(15) Guo, J.; Li, Y.; Zhu, S.; Chen, Z.; Liu, Q.; Zhang, D.; Moon,W. J.; Song, D. M. RSC Advances 2012, 2, 1356. doi: 10.1039/c1ra00621e
-
[14]
(16) An, X.; Yu, J. C.;Wang, Y.; Hu, Y.; Yu, X.; Zhang, G. J. Mater. Chem. 2012, 22, 8525. doi: 10.1039/c2jm16709c
-
[15]
(17) Yang, P.; Huang, H.; Yue, Z.; Li, G.;Wang, X.; Huang, J.; Du, Y. J. Mater. Chem. A 2013, 1, 15110. doi: 10.1039/c3ta13433d
-
[16]
(18) Wu, H.; Xu, M.; Da, P.; Li,W.; Jia, D.; Zheng, G. Phys. Chem. Chem. Phys. 2013, 15, 16138. doi: 10.1039/c3cp53051e
-
[17]
(19) Tang, L.;Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Adv. Funct. Mater. 2009, 19, 2782. doi: 10.1002/adfm.v19:17
-
[18]
(20) Xiang, Q.; Yu, J.; Jaroniec, M. Nanoscale 2011, 3, 3670. doi: 10.1039/c1nr10610d
-
[19]
(21) Dang, H.; Dong, X.; Dong, Y.; Huang, J. Int. J. Hydrog. Energy 2013, 38, 9178. doi: 10.1016/j.ijhydene.2013.05.061
-
[20]
(22) Radecka, M.; Sobas, P.;Wierzbicka, M.; Rekas, M. Physica B: Condensed Matter 2005, 364, 85. doi: 10.1016/j.physb.2005.03.039
-
[21]
(23) Hagfeldt, A.; Lindström, H.; Södergren, S.; Lindquist, S. E. J. Electroanal. Chem. 1995, 381, 39. doi: 10.1016/0022-0728(94)03622-A
-
[22]
(24) Su, J.; Feng, X.; Sloppy, J. D.; Guo, L.; Grimes, C. A. Nano Lett. 2010, 11, 203.
-
[1]
-
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[5]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[6]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[7]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[8]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[9]
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032
-
[10]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[11]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[12]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[13]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[14]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
-
[15]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[16]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[17]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[18]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[19]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[20]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[1]
Metrics
- PDF Downloads(501)
- Abstract views(917)
- HTML views(72)