Citation: LI Yu-Ling, KAN Cai-Xia, WANG Chang-Shun, LIU Jin-Sheng, XU Hai-Ying, NI Yuan, XU Wei, KE Jun-Hua, SHI Da-Ning. Surface Plasmon Resonance Coupling Effect of Assembled ld Nanorods Based on the FDTD Simulation[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1827-1836. doi: 10.3866/PKU.WHXB201408011 shu

Surface Plasmon Resonance Coupling Effect of Assembled ld Nanorods Based on the FDTD Simulation

  • Received Date: 27 May 2014
    Available Online: 1 August 2014

    Fund Project:

  • Much attention has been given to the optical properties of noble metal nanostructures and these are closely related to the size, morphology, and environment of the nanoparticles. In this paper, the influences of structures and assembly modes on the surface plasmon resonance (SPR) of Au nanorods were studied through a finite-difference time-domain (FDTD) simulation on Au nanorod assemblies (dimers and multimers) of different configurations. The simulated optical spectra agree well with the experimental results. The simulated results for the side-by-side (S-S) oriented Au nanorods indicate that the transverse SPR (SPRT) has a slight redshift, and the longitudinal SPR (SPRL) blue-shifts obviously. For the end-to-end (E-E) oriented Au nanorod dimer, the results indicate that with a decrease in the gap spacing of the E-E oriented Au nanorods, the SPRT does not shift while the SPRL red-shifts obviously. Moreover, a new coupling SPR peak appears in the near-infrared (NIR) region, blue-shifting and enhancing with a decrease in the gap spacing. Based on the spring oscillator model and the polarization of the nanoparticles under an incident electric field, we propose a reason for the SPR shift and the appearance of a new coupling SPR for the Au nanorod assemblies.

  • 加载中
    1. [1]

      (1) Holt-Hindle, P.; Nigro, S.; Asmussen, M.; Chen, A. Electrochem. Commun. 2008, 10, 1438. doi: 10.1016/j.elecom.2008.07.042

    2. [2]

      (2) Huang, X. H.; El-Sayed, I. H.; Qian,W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115. doi: 10.1021/ja057254a

    3. [3]

      (3) Gao, H.; Zhou,W.; Odom, T.W. Adv. Funct. Mater. 2010, 20, 529. doi: 10.1002/adfm.v20:4

    4. [4]

      (4) Valentine, J.; Li, J.; Zentgraf, T.; Bartal, G.; Zhang, X. Nat. Mater. 2009, 8, 568. doi: 10.1038/nmat2461

    5. [5]

      (5) Xu, H.; Aizpurua, J.; Kall, M.; Apell, P. Phys. Rev. E 2000, 62, 4318. doi: 10.1103/PhysRevE.62.4318

    6. [6]

      (6) Wang, J.; Yang, L.; Boriskina, S.; Yan, B.; Reinhard, B. M. Anal. Chem. 2011, 83, 2243. doi: 10.1021/ac103123r

    7. [7]

      (7) Pillai, S.; Green, M. A. Sol. Energy Mater. Sol. Cells 2010, 94, 1481. doi: 10.1016/j.solmat.2010.02.046

    8. [8]

      (8) Noginov, M. A.; Zhu, G.; Belgrave, A. M.; Bakker, R.; Shalaev, V. M.; Narimanov, E. E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U. Nature 2009, 460, 1110. doi: 10.1038/nature08318

    9. [9]

      (9) Fan, P.; Chettiar, U. K.; Cao, L.; Afshinmanesh, F.; Engheta, N.; Brongersma, M. L. Nat. Photonics 2012, 6, 380. doi: 10.1038/nphoton.2012.108

    10. [10]

      (10) Wu, C.; Khanikaev, A. B.; Adato, R.; Arju, N.; Yanik, A. A.; Altug, H.; Shvets, G. Nat. Mater. 2012, 11, 69. (11) Hao, F.; Sonnefraud, Y.; Dorpe, P. V.; Maier, S. A.; Halas, N. J.; Nordlander, P. Nano Lett. 2008, 8, 3983. doi: 10.1021/nl802509r

    11. [11]

      (12) Liu, N.; Pucci, A. Nat. Mater. 2012, 11, 9. (13) Bohern, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles;Wiley: New York, 1983. (14) Ke, S. L. Study on Preparation and Coupling Effect of ld Nanorods Assemblies. Ph. D. Dissertation, Nanjing University of Aeronautics and Astronautics, Nanjing, 2013. [柯善林. 金纳米棒组装体的制备及其耦合效应的研究[D]. 南京: 南京航空航天大学, 2013.] (15) Ma, H.; Bendix, P. M.; Oddershede, L. B. Nano Lett. 2012, 12, 3954. doi: 10.1021/nl3010918

    12. [12]

      (16) Kuemin, C.; Nowack, L.; Bozano, L.; Spencer, N. D.;Wolf, H. Adv. Funct. Mater. 2012, 22, 702. doi: 10.1002/adfm.201101760

    13. [13]

      (17) Lohse, S. E.; Murphy, C. J. Chem. Mater. 2013, 25, 1250. doi: 10.1021/cm303708p

    14. [14]

      (18) Wang, Y.;Wan, D. H.; Xie, S. F.; Xia, X. H.; Huang, C. Z.; Xia, Y. N. ACS Nano 2013, 7, 4589. (19) Xia, Y. N.; Xia, X. H.;Wang, Y.; Xie, S. F. MRS Bulletin 2013, 38, 343. (20) Wood, R.W. Phil. Magm. 1902, 4, 396. (21) Mie, G. Ann. Phys. 1908, 25, 377. (22) Kan, C. X.; Cai,W. P.; Li, C. C.; Fu, G. H.; Zhang, L. D. J. Appl. Phys. 2004, 96, 5727. doi: 10.1063/1.1801158

    15. [15]

      (23) Osborn, J. A. Phys. Rev. 1945, 67, 351. doi: 10.1103/ PhysRev.67.351

    16. [16]

      (24) Johnson, P. B.; Christy, R.W. Phys. Rev. B 1972, 6, 4370. doi: 10.1103/PhysRevB.6.4370

    17. [17]

      (25) Yang,W. H.; Schatz, G. C.; Duyne, R. P. V. J. Chem. Phys. 1995, 103, 869. (26) Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797. doi: 10.1021/cr0680282

    18. [18]

      (27) Li, X. Y. Researching the Extinction Properties of Noble Metal Nanoparticles via Discrete Dipole Approximation. Ph. D. Dissertation, Xiamen University, Xiamen, 2003. [李秀燕. 利用离散偶极近似理论研究贵金属纳米粒子的消光特性[D]. 厦门: 厦门大学, 2003.] (28) K, S. L.; Kan, C. X.; Liu, J. S.; Cong, B. RSC Adv. 2013, 3, 2692. (29) Yang, Z.; Ni,W. H.; Kou, X. S.; Zhang, S. Z.; Sun, Z. H.; Sun, L. D.;Wang, J. F.; Yan, C. H. J. Phys. Chem. C 2008, 112, 18895. doi: 10.1021/jp8069699

    19. [19]

      (30) Bardhan, R.; Grady, N. K.; Cole, J. R.; Joshi, A.; Halas, N. J. ACS Nano 2009, 3, 744. doi: 10.1021/nn900001q

    20. [20]

      (31) Chowdhury, M. H.; Ray, K.; Johnson, M. L.; Gray, S. K.; Pond, J.; Lakowicz, J. R. J. Phys. Chem. C 2010, 114, 7448. doi: 10.1021/jp911229c

    21. [21]

      (32) Fang, Y.; Seong, N. H.; Dlott, D. D. Science 2008, 321, 388. doi: 10.1126/science.1159499

    22. [22]

      (33) Yoon, I.; Kang, T.; Choi,W.; Kim, J.; Yoo, Y.; Joo, S.W.; Park, Q. H.; Ihee, H.; Kim, B. J. Am. Chem. Soc. 2009, 131, 758. doi: 10.1021/ja807455s

    23. [23]

      (34) Hsieh, H. Y.; Xiao, J. L.; Lee, C. H.; Huang, T.W.; Yang, C. S.; Wang, P. C.; Tseng, F. G. J. Phys. Chem. C 2011, 115, 16258. doi: 10.1021/jp2012667

    24. [24]

      (35) Shimada, T.; Imura, K.; Hossain, M. K.; Okamoto, H. M.; Kitajima, M. J. Phys. Chem. C 2008, 112, 4033. doi: 10.1021/jp8004508

    25. [25]

      (36) Nakamura, T.; Hirata, N.; Sekino, Y.; Nagaoka, S.; Nakajima, A. J. Phys. Chem. C 2010, 114, 16270. doi: 10.1021/jp105515t

    26. [26]

      (37) Celebrano, M.; Biagioni, P.; Finazzi, M.; Duò, L.; Zavelani-Rossi, M.; Polli, D.; Labardi, M.; Allegrini, M.; Grand, J.; Adam, P. M.; Royer, P.; Cerullo, G. Phys. Stat. Sol. C 2008, 5, 2657. (38) Ko, K. D.; Kumar, A.; Fung, K. H.; Ambekar, R.; Liu, G. L.; Fang, N. X.; Toussaint, K. C. J. Nano Lett. 2011, 11, 61. doi: 10.1021/nl102751m

    27. [27]

      (39) Wang, Z. L. Progress in Physics 2009, 29, 309. [王振林. 物理学进展, 2009, 29, 309.] (40) Barrow, S. J.; Funston, A. M.; Gómez, D. E.; Davis, T. J.; Mulvaney, P. Nano Lett. 2011, 11, 4180. doi: 10.1021/nl202080a

    28. [28]

      (41) Yee, K. IEEE Trans. Antennas Propag. 1966, 14, 302. doi: 10.1109/TAP.1966.1138693

    29. [29]

      (42) Yi, Z. G. Synthesis and Optical Properties of Nobel Metal. Ph. D. Dissertation, Nanjing University of Aeronautics and Astronautics, Nanjing, 2011. [伊兆广. 贵金属纳米材料的准备及其光学性质的研究[D]. 南京: 南京航空航天大学, 2011.] (43) Kan, C. X.; Ni, Y.; Cong, B.; Liu, J. S.; Xu, H. Y. Journal of Nanjing University of Aeronautics & Astronautics 2013, 45, 778. [阚彩侠, 倪媛, 从博, 刘津升, 徐海英. 南京航空航天大学学报, 2013, 45, 788.] (44) Ke, S. L.; Kan, C. X.; Mo, B.; Cong, B.; Zhu, J. J. Acta Phys. -Chim. Sin. 2012, 28, 1275. [柯善林, 阚彩侠, 莫博, 从博, 朱杰军. 物理化学学报, 2012, 28, 1275.] doi: 10.3866/PKU.WHXB201203162

    30. [30]

      (45) Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P. Nano Lett. 2009, 9, 1651. doi: 10.1021/nl900034v

    31. [31]

      (46) Shao, L.;Woo, K. C.; Chen, H. J.; Jin, Z.;Wang, J. F.; Lin, H. Q. ACS Nano 2010, 4, 3053. doi: 10.1021/nn100180d

    32. [32]

      (47) Simona, C. L.; Nicolas, S.; Cécile, S. R.; Anthony, A.; Bruno, P. Part. Part. Syst. Charact. 2013, 30, 585.


  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    4. [4]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    7. [7]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    10. [10]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    11. [11]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    14. [14]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    15. [15]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    16. [16]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    17. [17]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    18. [18]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(803)
  • Abstract views(1500)
  • HTML views(192)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return