Citation:
CUI Hai-Qin, JING Li-Qiang, XIE Ming-Zheng, LI Zhi-Jun. Hydrogenated Rutile TiO2 Nanorods and Their Photocatalytic Activity[J]. Acta Physico-Chimica Sinica,
;2014, 30(10): 1903-1908.
doi:
10.3866/PKU.WHXB201407173
-
TiO2 rutile nanorods were successfully synthesized by a hydrochloric acid-modified hydrothermal process, using butyl titanate as the titanium source, followed by hydrogenation treatment. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis near infrared (NIR) diffuse reflection spectroscopy (UV- Vis- NIR DRS), electron paramagnetic resonance (EPR), surface photovoltage spectroscopy (SPS), and the photodegradation of gas-phase acetaldehyde and liquid-phase phenol to evaluate the photocatalytic activity of the catalysts. The results show that the photoresponse of TiO2 gradually expands from the ultraviolet region to the visible and near-infrared regions upon increasing the hydrogenation time at high temperature. Its color changed from white to gray, and this is attributed to the introduction of Ti3+ defects and oxygen vacancies. Based on surface photovoltage spectroscopy responses and the amount of hydroxyl radicals produced, hydrogenation treatment promoted the photogenerated charge separation significantly. This is responsible for the improved photocatalytic degradation activity toward gasphase acetaldehyde and liquid-phase phenol under visible or ultraviolet irradiation. Therefore, a specific amount of defects and/or vacancies can induce new and appropriate surface states below the conduction band of the TiO2 samples. However, if the amount of introduced defects or vacancies is too high, low-level surface states are produced and this is not favorable for photogenerated charge separation, and detrimental to photocatalytic reactions.
-
-
-
[1]
(1) Lin, Y. M.; Li, D. Z.; Hu, J. H.; Xiao, G. C.;Wang, J. X.; Li,W. J.; Fu, X. Z. J. Phys. Chem. C 2012, 116, 5764. doi: 10.1021/jp211222w
-
[2]
(2) Hoffmann, M. R.; Martin, S. T.; Choi,W.; Bahnemann, D.W. Chem. Rev. 1995, 95, 69. doi: 10.1021/cr00033a004
-
[3]
(3) nzalez-Urbina, L.; Baert, K.; Kolaric, B.; Perez-Moreno, J.; Clays, K. Chem. Rev. 2012, 112, 2268. doi: 10.1021/cr200063f
-
[4]
(4) Chen, H.; Nanayakkara, C. E.; Grassian, V. H. Chem. Rev. 2012, 112, 5919. doi: 10.1021/cr3002092
-
[5]
(5) Ollis, D. F.; Pelizzetti, E.; Serpone, N. Environ. Sci. Technol. 1991, 25, 1522. doi: 10.1021/es00021a001
-
[6]
(6) Choi, S. K.; Kim, S.; Lim, S. K.; Park, H. J. Phys. Chem. C 2010, 114, 16475. doi: 10.1021/jp104317x
-
[7]
(7) Luan, Y. B.; Feng, Y. J.;Wang,W. X.; Xie, M. Z.; Jing, L. Q. Acta Phys. -Chim. Sin. 2013, 29, 2655. [栾云博, 冯玉杰, 王文欣, 谢明政, 井立强. 物理化学学报, 2013, 29, 2655.] doi: 10.3866/PKU.WHXB201310141
-
[8]
(8) Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746. (9) Wang,W.; Ni, Y.; Lu, C. H.; Xu, Z. Z. RSC Adv. 2012, 2, 8286. doi: 10.1039/c2ra21049e
-
[9]
(10) Pei, Z. X.; Ding, L. Y.; Lin, H.;Weng, S. X.; Zheng, Z. Y.; Hou, Y. D.; Liu, P. J. Mater. Chem. A 2013, 1, 10099. doi: 10.1039/c3ta12062g
-
[10]
(11) Grabstanowicz, L. R.; Gao, S.; Li, T.; Rickard, R. M.; Rajh, T.; Liu, D. J.; Xu, T. Inorg. Chem. 2013, 52, 3884. doi: 10.1021/ic3026182
-
[11]
(12) Zuo, F.;Wang, L.;Wu, T.; Zhang, Z. Y.; Borchardt, D.; Feng, P. Y. J. Am. Chem. Soc. 2010, 132, 11856. doi: 10.1021/ja103843d
-
[12]
(13) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269. doi: 10.1126/science.1061051
-
[13]
(14) Yin,W. J.; Tang, H.;Wei, S. H.; Al-Jassim, M. M.; Turner, J.; Yan, Y. Phys. Rev. B 2010, 82, 045106. (15) Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Appl. Phys. Lett. 2002, 81, 454. doi: 10.1063/1.1493647
-
[14]
(16) Khan, M. M.; Ansari, S. A.; Pradhan, D.; Ansari, M. O.; Han, D. H.; Lee, J.; Cho, M. H. J. Mater. Chem. A 2014, 2, 637. (17) Gan, Y. P.; Qin, H. P.; Huang, H.; Tao, X. Y.; Fang, J.W.; Zhang, W. K. Acta Phys. -Chim. Sin. 2013, 29, 403. [甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 物理化学学报, 2013, 29, 403.] doi: 10.3866/PKU.WHXB201211022
-
[15]
(18) Valentin, C. D.; Pacchioni, G. J. Phys. Chem. C 2009, 113, 20543. doi: 10.1021/jp9061797
-
[16]
(19) Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. J. Am. Chem. Soc. 2012, 134, 3659. doi: 10.1021/ja211369s
-
[17]
(20) Zhu, Q.; Peng, Y.; Lin, L.; Fan, C. M.; Gao, G. Q.;Wang, R. X.; Xu, A.W. J. Mater. Chem. A 2014, 2, 4429. doi: 10.1039/c3ta14484d
-
[18]
(21) Zou, X. X.; Liu, J. K.; Sun, J.; Zuo, F.; Chen, J. S.; Feng, P. Y. Chem. -Eur. J. 2013, 19, 2866. doi: 10.1002/chem.201202833
-
[19]
(22) Yu, X. M.; Kim, B.; Kim, Y. K. ACS Catal. 2013, 3, 2479. doi: 10.1021/cs4005776
-
[20]
(23) Kumar, C. P.; pal, N. O.;Wang, T. C.;Wong, M. S.; Ke, S. C. J. Phys. Chem. B 2006, 110, 5223. (24) Luan, Y. B.; Jing, L. Q.; Xie, M. Z.; Shi, X.; Fan, X. X.; Cao, Y.; Feng, Y. J. Phys. Chem. Chem. Phys. 2012, 14, 1352. doi: 10.1039/c1cp22907a
-
[21]
(25) Cui, H. Q.; Cao, Y.; Jing, L. Q.; Luan, Y. B.; Li, N. ChemPlusChem 2014, 79, 318. doi: 10.1002/cplu.v79.2
-
[22]
(26) Liu, T.; You, H.; Chen, Q.W.;Wang, Z. C. Environ. Sci. 2009, 30, 2560. [刘婷, 尤宏, 陈其伟, 汪志超. 环境科学, 2009, 30, 2560.]
-
[1]
-
-
-
[1]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[2]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[3]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
-
[4]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[5]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[6]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[7]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[8]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[9]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[10]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[11]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[12]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[13]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084
-
[14]
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
-
[15]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[16]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[17]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[18]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[19]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[20]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[1]
Metrics
- PDF Downloads(556)
- Abstract views(648)
- HTML views(14)