Citation: TANG Jia-Yong, CAO Pei-Qi, FU Yan-Bao, LI Peng-Hui, MA Xiao-Hua. Synthesis of a Mesoporous Manganese Dioxide-Graphene Composite by a Simple Template-Free Strategy for High-Performance Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1876-1882. doi: 10.3866/PKU.WHXB201407172 shu

Synthesis of a Mesoporous Manganese Dioxide-Graphene Composite by a Simple Template-Free Strategy for High-Performance Supercapacitors

  • Received Date: 6 May 2014
    Available Online: 17 July 2014

    Fund Project:

  • Amanganese dioxide (MnO2)-graphene composite material with a unique structure consisting of MnO2 surrounded by graphene sheets was prepared by a simple hydrothermal and thermal decomposition method. The morphology and structure of the obtained materials were examined by scanning electron microscopy, transition electron microscopy, Raman spectroscopy, X-ray diffraction, and N2 adsorption-desorption. Electrochemical properties were evaluated by cyclic voltammetry, galvanostatic charge- discharge and electrochemical impedance spectroscopy. The specific surface area increased from 109 to 168 m2·g-1 for the composite containing 15% (w) graphene. The specific capacitance also increased from 294 to 454 F·g-1 at a current density of 0.2 A·g-1 in an aqueous electrolyte supercapacitor. Moreover, after 2000 cycles of a galvanostatic charge-discharge test, the hybrid electrode still had excellent cycle stability (92% retention rate).

  • 加载中
    1. [1]

      (1) Chen, Z.; Qin, Y.;Weng, D.; Xiao, Q.; Peng, Y.;Wang, X.; Li, H.;Wei, F.; Lu, Y. Advanced Functional Materials 2009, 19, 3420. doi: 10.1002/adfm.v19:21

    2. [2]

      (2) Winter, M.; Brodd, R. J. Chemical Reviews 2004, 104 (10), 4245. doi: 10.1021/cr020730k

    3. [3]

      (3) Burke, A. Journal of Power Sources 2000, 91 (1), 37. doi: 10.1016/S0378-7753(00)00485-7

    4. [4]

      (4) Wang, G.; Zhang, L.; Zhang, J. Chemical Society Reviews 2012, 41 (2), 797. doi: 10.1039/c1cs15060j

    5. [5]

      (5) Yang, Z.; Zhang, J.; Kintner-Meyer, M. C.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Chemical Reviews 2011, 111 (5), 3577. doi: 10.1021/cr100290v

    6. [6]

      (6) Yang, G.; Xu, C.; Li, H. Chem. Commun. 2008, 48, 6537. (7) Qu, D. Journal of Power Sources 2002, 109 (2), 403. doi: 10.1016/S0378-7753(02)00108-8

    7. [7]

      (8) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28 (11), 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28 (11), 2745.] doi: 10.3866/PKU.WHXB201208221

    8. [8]

      (9) Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Letters 2008, 8 (10), 3498. (10) Zhu, J. B.; Xu, Y. L.;Wang, J.;Wang, J. P. Acta Phys. -Chim. Sin. 2012, 28 (2), 378. [朱剑波, 徐友龙, 王杰, 王景平. 物理化学学报, 2012, 28 (2), 378.] doi: 10.3866/PKU.WHXB201112021

    9. [9]

      (11) Lu, X.; Dou, H.; Yuan, C.; Yang, S.; Hao, L.; Zhang, F.; Shen, L.; Zhang, L.; Zhang, X. Journal of Power Sources 2012, 197, 319. doi: 10.1016/j.jpowsour.2011.08.112

    10. [10]

      (12) Liu, Y.; Yan, D.; Zhuo, R.; Li, S.;Wu, Z.;Wang, J.; Ren, P.; Yan, P.; Geng, Z. Journal of Power Sources 2013, 242, 78. doi: 10.1016/j.jpowsour.2013.05.062

    11. [11]

      (13) Wang, Y.; Hu, Z.;Wu, H. Materials Chemistry and Physics 2011, 126 (3), 580. doi: 10.1016/j.matchemphys.2011.01.022

    12. [12]

      (14) Liu, J.; Jiang, J.; Cheng, C.; Li, H.; Zhang, J.; ng, H.; Fan, H. J. Advanced Materials 2011, 23 (18), 2076. doi: 10.1002/adma.v23.18

    13. [13]

      (15) Wei,W.; Cui, X.; Chen,W.; Ivey, D. G. Chemical Society Reviews 2011, 40 (3), 1697. doi: 10.1039/c0cs00127a

    14. [14]

      (16) Long, J.W.; Bélanger, D.; Brousse, T.; Sugimoto,W.; Sassin, M. B.; Crosnier, O. Mrs Bull. 2011, 36 (7), 513. (17) Toupin, M.; Brousse, T.; Bélanger, D. Chemistry of Materials 2002, 14 (9), 3946. (18) Kim, J.; Lee, K. H.; Overzet, L. J.; Lee, G. S. Nano Letters 2011, 11 (7), 2611. (19) Li, P. H.; Ma, X. H. Battery Bimonthly 2013, No. 6, 247. [李鹏辉, 马晓华. 电池, 2013, No. 6, 247.] (20) Zhang, X. Y.; Ran, F.; Fan, H. L.; Kong, L. B.; Kang, L. Acta Phys. -Chim. Sin. 2014, 30 (5), 881. [张宣宣, 冉奋, 范会利, 孔令斌, 康龙. 物理化学学报, 2014, 30 (5), 881.] doi: 10.3866/PKU.WHXB201403061

    15. [15]

      (21) Geim, A. K. Science 2009, 324 (5934), 1530. (22) Geim, A. K.; Novoselov, K. S. Nature Materials 2007, 6 (3), 183. doi: 10.1038/nmat1849

    16. [16]

      (23) Yan, J.; Fan, Z.;Wei, T.; Qian,W.; Zhang, M.;Wei, F. Carbon 2010, 48 (13), 3825. doi: 10.1016/j.carbon.2010.06.047

    17. [17]

      (24) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. Carbon 2011, 49 (9), 2917. doi: 10.1016/j.carbon.2011.02.068

    18. [18]

      (25) Yu, G.; Hu, L.; Vosgueritchian, M.;Wang, H.; Xie, X.; McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z. Nano Letters 2011, 11(7), 2905. doi: 10.1021/nl2013828

    19. [19]

      (26) Subramanian, V.; Zhu, H.;Wei, B. Electrochemistry Communications 2006, 8 (5), 827. doi: 10.1016/j.elecom.2006.02.027

    20. [20]

      (27) Chen, D.; Ji, G.; Ma, Y.; Lee, J. Y.; Lu, J. ACS Applied Materials & Interfaces 2011, 3 (8), 3078. doi: 10.1021/am200592r

    21. [21]

      (28) Ma, J.; Cheng, Q.; Pavlinek, V.; Saha, P.; Li, C. New Journal of Chemistry 2013, 37, 722. doi: 10.1039/C2NJ40880E

    22. [22]

      (29) Tang, X.; Liu, Z.; Zhang, C.; Yang, Z.;Wang, Z. Journal of Power Sources 2009, 193 (2), 939. doi: 10.1016/j.jpowsour.2009.04.037

    23. [23]

      (30) Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442 (7100), 282. doi: 10.1038/nature04969

    24. [24]

      (31) ng, Y.; Yang, S.; Liu, Z.; Ma, L.; Vajtai, R.; Ajayan, P. M. Advanced Materials 2013, 25, 3979. doi: 10.1002/adma.201301051

    25. [25]

      (32) Wang, D.; Li, F.;Wu, Z.; Ren,W.; Cheng, H. Electrochemistry Communications 2009, 11 (9), 1729. (33) Gao, T.; Glerup, M.; Krumeich, F.; Nesper, R.; Fjellvåg, H.; Norby, P. The Journal of Physical Chemistry C 2008, 112 (34), 13134. doi: 10.1021/jp804924f

    26. [26]

      (34) Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; vindaraj, A. Angewandte Chemie International Edition 2009, 48 (42), 7752. (35) Subramanian, V.; Zhu, H.;Wei, B. Journal of Power Sources 2006, 159 (1), 361. doi: 10.1016/j.jpowsour.2006.04.012

    27. [27]

      (36) Mao, L.; Zhang, K.; Chan, H. S. O.;Wu, J. Journal of Materials Chemistry 2012, 22 (1), 80. doi: 10.1039/c1jm12869h

    28. [28]

      (37) Lee, H.; Kang, J.; Cho, M. S.; Choi, J.; Lee, Y. Journal of Materials Chemistry 2011, 21 (45), 18215. doi: 10.1039/c1jm13364k

    29. [29]

      (38) Zhang, L. L.; Zhou, R.; Zhao, X. S. Journal of Materials Chemistry 2010, 20 (29), 5983. doi: 10.1039/c000417k

    30. [30]

      (39) Xu, M.; Kong, L.; Zhou,W.; Li, H. The Journal of Physical Chemistry C 2007, 111 (51), 19141. doi: 10.1021/jp076730b

    31. [31]

      (40) Fan, Z.; Yan, J.;Wei, T.; Zhi, L.; Ning, G.; Li, T.;Wei, F. Advanced Functional Materials 2011, 21 (12), 2366. doi: 10.1002/adfm.v21.12


  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    11. [11]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    14. [14]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    17. [17]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    18. [18]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(628)
  • Abstract views(699)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return