Citation: LI Xiang-Hong, DENG Shu-Duan, XIE Xiao-Guang, DU Guan-Ben. Inhibition Effect of Bamboo Leaf Extract on the Corrosion of Aluminum in HCl Solution[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1883-1894. doi: 10.3866/PKU.WHXB201407161 shu

Inhibition Effect of Bamboo Leaf Extract on the Corrosion of Aluminum in HCl Solution

  • Received Date: 28 April 2014
    Available Online: 16 July 2014

    Fund Project:

  • A bamboo leaf inhibitor (designated PSLE) was extracted from Phyllostachys sulphurea (Corr. Riviere) leaves using a series of C2H5OH-water solutions (20%-80% (volume fraction)). The solutions were characterized by Fourier transform infrared (FTIR) spectroscopy and ultraviolet- visible (UV-Vis) spectrophotometry. The total flavonoid content of the PSLE was determined. The inhibition effect of PSLE toward the corrosion of aluminum in HCl solution was studied by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). Density functional theory (DFT) quantum chemical calculations including solvent effects were used to investigate the adsorption of light by the two major components vientin and isovientin. The results show that PSLE is a od inhibitor and the adsorption of PSLE on the aluminum surface obeys the Langmuir adsorption isotherm. The inhibition efficiency increases with PSLE concentration while it decreases with temperature and HCl concentration. A od correlation exists between the total flavonoid content and the inhibition performance. This implies that the flavonoids are the major contributor to inhibition activity. PSLE behaves as a cathodic inhibitor. The EIS spectra are characterized by one large capacitive loop at high frequencies followed by a large inductive loop at low frequency values. The impedance value increases with increasing inhibitor concentration. SEM results confirm that the corrosion of aluminum is retarded remarkably by PSLE. The quantum calculation results indicate that the adsorption center of either vientin or isovientin is mainly a flavonoid backbone structure (FBS).

  • 加载中
    1. [1]

      (1) Chaieb, E.; Bouyanzer, A.; Hammouti, B.; Berrabah, M. Acta Phys. -Chim. Sin. 2009, 25, 1254. [Chaieb, E.; Bouyanzer, A.; Hammouti, B.; Berrabah, M. 物理化学学报, 2009, 25, 1254.] doi: 10.3866/PKU.WHXB20090709

    2. [2]

      (2) Raja, P. B.; Rahim, A. A.; Osman, H.; Awang, K. Acta Phys. -Chim. Sin. 2010, 26, 2171. [Raja, Pandian Bothi; Rahim, Afidah Abdul; Osman, Hasnah; Awang, Khalijah. 物理化学学报, 2010, 26, 2171.] doi: 10.3866/PKU.WHXB20100646

    3. [3]

      (3) El Hosary, A. A.; Saleh R. M.; Shams El Din, A. M. Corrossion Sci. 1972, 12, 897. doi: 10.1016/S0010-938X(72)80098-2

    4. [4]

      (4) Avwiri, G. O.; Lgho, F. O. Mater. Lett. 2003, 57, 3705. doi: 10.1016/S0167-577X(03)00167-8

    5. [5]

      (5) Oguzie, E. E.; Onuchukwu, A. I.; Okafor, P. C.; Ebenso, E. E. Pig. Resin. Technol. 2006, 35 (2), 63. doi: 10.1108/03699420610652340

    6. [6]

      (6) El-Etre, A. Y. Corrosion Sci. 2003, 45, 2485. doi: 10.1016/S0010-938X(03)00066-0

    7. [7]

      (7) Oguzie, E. E. Corrosion Sci. 2007, 49, 1527. doi: 10.1016/j.corsci.2006.08.009

    8. [8]

      (8) Umoren, S. A.; Obot, I. B.; Ebenso, E. E.; Obi-Egbedi, N. O. Desalination 2009, 247, 561. doi: 10.1016/j.desal.2008.09.005

    9. [9]

      (9) Deng, S. D.; Li, X. H. Corrosion Sci. 2012, 64, 253. doi: 10.1016/j.corsci.2012.07.017

    10. [10]

      (10) Lu, B. Y.;Wu, X. Q.; Tie, X.W.; Zhang, Y.; Zhang, Y. Food Chem. Toxicol. 2005, 43, 783. doi: 10.1016/j.fct.2005.01.019

    11. [11]

      (11) Lu, B. Y.;Wu, X. Q.; Shi, J. Y.; Dong, Y. J.; Zhang, Y. Food Chem. Toxicol. 2006, 44, 1739. doi: 10.1016/j.fct.2006.05.012

    12. [12]

      (12) Li, X. H.; Deng, S. D.; Fu, H. Corrosion Sci. 2012, 62, 163. doi: 10.1016/j.corsci.2012.05.008

    13. [13]

      (13) Deng, S. D.; Li, X. H.; Fu, H. Chem. Indust. Forest Prod. 2010, 30, 81. [邓书端, 李向红, 付惠. 林产化学与工业, 2010, 30, 81.] (14) Li, X. H.; Deng, S. D. Corrosion Sci. 2012, 65, 299. doi: 10.1016/j.corsci.2012.08.033

    14. [14]

      (15) Li, X. H.; Deng, S. D.; Fu, H. Acta Phys. -Chim. Sin. 2011, 27, 2841. [李向红, 邓书端, 付惠. 物理化学学报, 2011, 27, 2841.] doi: 10.3866/PKU.WHXB20112841

    15. [15]

      (16) Materials Studio 7.0. Accelrys Inc.: San Die , CA, 2013. (17) Becke, A. D. J. Chem. Phys. 1988, 88, 2547. doi: 10.1063/1.454033

    16. [16]

      (18) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    17. [17]

      (19) Klamt, A.; Schüürmann, G. J. Chem. Soc. Perkin Trans. 1993, 2, 799. (20) Jing,W. J. Information Develop Economy 2009, 19, 139. (21) Su, C. H.;Wang, F. S.; Ding, Y. L. China Forestry Sci. Tech. 2010, 24, 87. (22) Deng, Q. Y.; Liu, L.; Deng, H. M. Principles of Spectrometric Identification, 2nd ed.; Science Press: Beijing, 2007; p 37. (23) Kuang, H. X. Traditional Chinese Medicine Chemistry; Traditional Chinese Medicine Press: Beijing, 2003; p 155. (24) Fuchs- dec, R.; Dole?ek,V. Colloids Surf. A 2004, 244, 73. doi: 10.1016/j.colsurfa.2004.05.015

    18. [18]

      (25) Cano, E.; Polo, J. L.; La Iglesia, A.; Bastidas, J. M. Adsorption 2004, 10, 219. doi: 10.1023/B:ADSO.0000046358.35572.4c

    19. [19]

      (26) Zhao, J. M.; Li, J. Acta Phys. -Chim. Sin. 2012, 28, 623. [赵景茂, 李俊. 物理化学学报, 2012, 28, 623.] doi: 10.3866/PKU.WHXB201112293

    20. [20]

      (27) Oguzie, E. E.; Unaegbu, C.; Ogukwea, C. N.; Okolue, B. N.; Onuchuku, A. I. Mater. Chem. Phys. 2004, 84, 363. doi: 10.1016/j.matchemphys.2003.11.027

    21. [21]

      (28) Deng, S. D.; Li, X. H.; Xie, X. G. Corrosion Sci. 2014, 80, 276. doi: 10.1016/j.corsci.2013.11.041

    22. [22]

      (29) Zhang, Q. B.; Hua, Y. X. Mater. Chem. Phys. 2010, 119, 57. doi: 10.1016/j.matchemphys.2009.07.035

    23. [23]

      (30) Martinez, S.; Stern, I. Appl. Surf. Sci. 2002, 199, 83. doi: 10.1016/S0169-4332(02)00546-9

    24. [24]

      (31) Behpour, M.; Ghoreishi, S. M.; Soltani, N.; Salavati-Niasari, M. T. Corrosion Sci. 2009, 51, 1073. doi: 10.1016/j.corsci.2009.02.011

    25. [25]

      (32) Cai, Q. H.; Shan, Y. K.; Lu, B.; Yuan, X. H. Corrosion 1993, 49, 486. doi: 10.5006/1.3316077

    26. [26]

      (33) de Assunção Araújo Pereira, S. S.; Pêgas, M. M.; Fernández, T. L.; Magalhães, M.; Schöntag, T. G.; La , D. C.; de Senna, L. F.; D'Elia, E. Corrosion Sci. 2012, 65, 360. doi: 10.1016/j.corsci.2012.08.038

    27. [27]

      (34) Obot, I. B.; Obi-Egbedi, N. O. Corrosion Sci. 2010, 52, 282. doi: 10.1016/j.corsci.2009.09.013

    28. [28]

      (35) Shukla, S. K.; Quraishi, M. A. Corrosion Sci. 2010, 52, 314. doi: 10.1016/j.corsci.2009.09.017

    29. [29]

      (36) Talati, J. D.; Gandhi, D. K. Corrosion Sci. 1983, 23, 1315. doi: 10.1016/0010-938X(83)90081-1

    30. [30]

      (37) Yurt, A.; Ulutas, S.; Dal, H. Appl. Surf. Sci. 2006, 253, 919. doi: 10.1016/j.apsusc.2006.01.026

    31. [31]

      (38) Li, X. H.; Deng, S. D.; Fu, H. Corrosion Sci. 2011, 53, 1529. (39) Cao, C. N. Corrosion Electrochemistry Mechanism, 3rd ed.; Chemical Industrial Engineering Press: Beijing, 2008; p 197. (40) Oguzie, E. E.; Okolue, B. N.; Ebenso, E. E.; Onuoha, G. N.; Onuchukwu, A. I. Mater. Chem. Phys. 2004, 87, 394. doi: 10.1016/j.matchemphys.2004.06.003

    32. [32]

      (41) Khaled, K. F.; Al-Qahtani, M. M. Mater. Chem. Phys. 2009, 113, 150. doi: 10.1016/j.matchemphys.2008.07.060

    33. [33]

      (42) Li, X. H.; Deng, S. D.; Xie, X. G. Corrosion Sci. 2014, 81, 162. doi: 10.1016/j.corsci.2013.12.021

    34. [34]

      (43) Garrigues, L.; Pebere, N.; Dabosi, F. Electrochim. Acta 1996, 41, 1209. doi: 10.1016/0013-4686(95)00472-6

    35. [35]

      (44) Noor, E. A. Mater. Chem. Phys. 2009, 114, 533. doi: 10.1016/j.matchemphys.2008.09.065

    36. [36]

      (45) Bessone, J.; Mayer, C.; Jutter, K.; Lorenz,W. Electrochim. Acta 1983, 28, 171. doi: 10.1016/0013-4686(83)85105-6

    37. [37]

      (46) Brett, C. M. A. Corrosion Sci. 1992, 33, 203. doi: 10.1016/0010-938X(92)90145-S

    38. [38]

      (47) Burstein, G. T.; Cinderey, R. J. Corrosion Sci. 1992, 32, 1195. (48) Metlkoš -Hukovi?, M.; Babi?, R.; Grubac, Z. J. Appl. Electrochem. 1998, 28, 433. doi: 10.1023/A:1003200808093

    39. [39]

      (49) Lebrini, M.; Lagrenée, M.; Vezin, H.; Traisnel, M.; Bentiss, F. Corrosion Sci. 2007, 49, 2254. doi: 10.1016/j.corsci.2006.10.029

    40. [40]

      (50) Amin, M. A.; Mohsen, Q.; Hazzai, O. A. Mater. Chem. Phys. 2009, 114, 908. doi: 10.1016/j.matchemphys.2008.10.057

    41. [41]

      (51) Lenderink, H. J.W.; Linden, M. V. D.; DeWit, J. H.W. Electrochim. Acta 1993, 38, 1989. doi: 10.1016/0013-4686(93)80329-X

    42. [42]

      (52) Kilner, C. A.; Halcrow, M. A. Polyhedron 2006, 25, 235. doi: 10.1016/j.poly.2005.06.034

    43. [43]

      (53) Beaufort, L.; Benvenuti, F.; Noels, A. F. I. J. Mol. Catal. AChem. 2006, 260, 210. doi: 10.1016/j.molcata.2006.07.005

    44. [44]

      (54) Abd El Rehim, S. S.; Hassan, H. H.; Amin, M. A. Mater. Chem. Phys. 2001, 70, 64. doi: 10.1016/S0254-0584(00)00468-5

    45. [45]

      (55) Osório,W. R.; Moutinho, D. J.; Peixoto, L. C.; Ferreira, I. L.; Garcia, A. Electrochim. Acta 2011, 56, 8412. doi: 10.1016/j.electacta.2011.07.028

    46. [46]

      (56) Lagrenée, M.; Mernari, B.; Bouanis, M.; Traisnel, M.; Bentiss, F. Corrosion Sci. 2002, 44, 573. doi: 10.1016/S0010-938X(01)00075-0

    47. [47]

      (57) Lorenz,W. J.; Mansfeld, F. Corrosion Sci. 1981, 21, 647. doi: 10.1016/0010-938X(81)90015-9

    48. [48]

      (58) Tang, H. G.; Zheng,W. D.; Chen, Z. D. Chin. Agri. Sci. Bull. 2005, 21, 114. (59) Li, H. Y.; Sun, J. Y.; Zhang, J. M.; Shou, D. Chin. Traditional Patent Medi. 2004, 26, 208. (60) Li, X. H.; Deng, S. D.; Fu, H.; Xie, X. G. Corrosion Sci. 2014, 78, 29. doi: 10.1016/j.corsci.2013.08.025

    49. [49]

      (61) Gao, Z. Q.; Xu, Q.; Song, Z. R.;Wang, L. Chem. World 2008, 49, 439. (62) Fukui, K. Angewandte Chemie International Edition in English 1982, 21, 801. (63) Li, X. H.; Xie, X. G. Acta Phys. -Chim. Sin. 2013, 29, 2221. [李向红, 谢小光. 物理化学学报, 2013, 29, 2221.] doi: 10.3866/PKU.WHXB201307301


  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    3. [3]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    6. [6]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    7. [7]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    13. [13]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    14. [14]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    15. [15]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    16. [16]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    17. [17]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    18. [18]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    19. [19]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    20. [20]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

Metrics
  • PDF Downloads(414)
  • Abstract views(767)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return