Citation: PENG San, GUO Hui-Lin, KANG Xiao-Feng. Preparation of Nitrogen-Doped Graphene and Its Electrocatalytic Activity for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1778-1786. doi: 10.3866/PKU.WHXB201407112 shu

Preparation of Nitrogen-Doped Graphene and Its Electrocatalytic Activity for Oxygen Reduction Reaction

  • Received Date: 15 May 2014
    Available Online: 11 July 2014

    Fund Project:

  • Nitrogen-doped graphene (NG) was prepared by chemical reduction of graphene oxide ( ) using dimethyl ketoxime (DMKO) as reducing and doping agents. The morphologies, structures, compositions, and electrocatalytic activities of the as-prepared materials were investigated using field-emission transmission electron microscopy (FETEM), ultraviolet- visible (UV-Vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), zeta potential and nanoparticle analyses, cyclic voltammetry (CV), and the rotating disk electrode (RDE) method. The results showed that sheets were effectively reduced by DMKO. NG samples with different nitrogen contents were obtained by adjusting the mass ratio of to DMKO; the nitrogen contents were in the range 4.40%-5.89% (atomic fraction). NG-1, obtained using a /DMKO mass ratio of 1:0.7, showed excellent electrocatalytic activity in the oxygen reduction reaction (ORR) in an O2-saturated 0.1 mol·L-1 KOH solution. The peak current was 0.93 mA·cm-2, and the number of electrons transferred per O2 was 3.6; this was attributed to the increase in the number of ORR active sites in the presence of pyridinic-N. In addition, the electrocatalytic activity of NG was found to be dependent on the graphitic-N content, which determined the limiting current density, because of its higher electronic conductivity. The pyridinic-N content improved the onset potential, because of its lower overpotential for the ORR. NG therefore exhibited a high selectivity in the ORR, with od tolerance of methanol cross-over effects. It is therefore superior to commercial Pt/C catalysts.

  • 加载中
    1. [1]

      (1) Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115

    2. [2]

      (2) Yang, R.; Leisch, J.; Strasser, P.; Toney, M. F. Chem. Mater. 2010, 22, 4712. doi: 10.1021/cm101090p

    3. [3]

      (3) Chen, A.; Holt-Hindle, P. Chem. Rev. 2010, 110, 3767. doi: 10.1021/cr9003902

    4. [4]

      (4) Zheng, Y.; Jiao, Y.; Jaroniec, M.; Jin, Y.; Qiao, S. Z. Small 2012, 8, 3550.

    5. [5]

      (5) Zhang, L.; Zhang, J.;Wilkinson, D. P.;Wang, H. J. Power Sources 2006, 156, 171. doi: 10.1016/j.jpowsour.2005.05.069

    6. [6]

      (6) Zhang, M.; Dai, L. Nano Energy, 2012, 1, 514. doi: 10.1016/j.nanoen.2012.02.008

    7. [7]

      (7) Nallathambi, V.; Lee, J.W.; Kumaraguru, S. P.;Wu, G.; Popov, B. N. J. Power Sources 2008, 183, 34. doi: 10.1016/j.jpowsour.2008.05.020

    8. [8]

      (8) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.] doi: 10.3866/PKU.WHXB20100812

    9. [9]

      (9) Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Nano Lett. 2008, 8, 2458. doi: 10.1021/nl801457b

    10. [10]

      (10) Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, 217. doi: 10.1038/nnano.2009.58

    11. [11]

      (11) Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379. doi: 10.1126/science.1137201

    12. [12]

      (12) Balandin, A. A.; Ghosh, S.; Bao,W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872 doi: 10.1021/nl0731872

    13. [13]

      (13) Avouris, P.; Chen, Z.; Perebeinos, V. Nat. Nanotechnol. 2007, 2, 605. doi: 10.1038/nnano.2007.300

    14. [14]

      (14) Wang, X.; Li, X.; Zhang, L.; Yoon, Y.;Weber, P. K.;Wang, H.; Guo, J.; Dai, H. Science 2009, 324, 768. doi: 10.1126/science.1170335

    15. [15]

      (15) Jeon, I. Y.; Choi, H. J.; Choi, M.; Seo, J. M.; Jung, S. M.; Kim, M. J.; Zhang, S.; Zhang, L.; Xia, Z.; Dai, L.; Park, N.; Baek, J. B. Scientific Reports 2013, 3, 1810.

    16. [16]

      (16) Geng, D.; Chen, Y.; Chen, Y.; Li, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. Energy Environ. Sci. 2011, 4, 760. doi: 10.1039/c0ee00326c

    17. [17]

      (17) Qu, L.; Liu, Y.; Baek, J. B.; Dai, L. ACS Nano 2010, 4, 1321. doi: 10.1021/nn901850u

    18. [18]

      (18) Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.;Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. J. Mater. Chem. 2010, 20, 7491. doi: 10.1039/c0jm00782j

    19. [19]

      (19) Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao,W. J.;Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t

    20. [20]

      (20) Ma, G. X.; Zhao, J. H.; Zheng, J. F.; Zhu, Z. P. New Carbon Mater. 2012, 27, 258. [马贵香, 赵江红, 郑剑锋, 朱珍平. 新型炭材料, 2012, 27, 258.]

    21. [21]

      (21) Unni, S. M.; Devulapally, S.; Karjule, N.; Kurun t, S. J. Mater. Chem. 2012, 22, 23506. doi: 10.1039/c2jm35547g

    22. [22]

      (22) Yang, S.; Zhi, L.; Tang, K.; Feng, X.; Maier, J.; Müllen, K. Adv. Funct. Mater. 2012, 22, 3634. doi: 10.1002/adfm.v22.17

    23. [23]

      (23) Li, N.;Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Carbon 2010, 48, 255. doi: 10.1016/j.carbon.2009.09.013

    24. [24]

      (24) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28, 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28, 2745.] doi: 10.3866/PKU.WHXB201208221

    25. [25]

      (25) Li, X.;Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Am. Chem. Soc. 2009, 131, 15939. doi: 10.1021/ja907098f

    26. [26]

      (26) Su, P.; Guo, H. L.; Tian, L.; Ning, S. K. Carbon 2012, 50, 5351. doi: 10.1016/j.carbon.2012.07.001

    27. [27]

      (27) Wang, Y.; Shao, Y.; Matson, D.W.; Li, J.; Lin, Y. ACS Nano 2010, 4, 1790. doi: 10.1021/nn100315s

    28. [28]

      (28) Lin, Z.;Waller, G. H.; Liu, Y.; Liu, M.;Wong, C. P. Carbon 2013, 53, 130. doi: 10.1016/j.carbon.2012.10.039

    29. [29]

      (29) Subramanian, N. P.; Li, X.; Nallathambi, V.; Kumaraguru, S. P.; Colon-Mercado, H.;Wu, G.; Lee, JW.; Popov, B. N. J. Power Sources 2009, 188, 38. doi: 10.1016/j.jpowsour.2008.11.087

    30. [30]

      (30) Saidi,W. A. J. Phys. Chem. Lett. 2013, 4, 4160. doi: 10.1021/jz402090d

    31. [31]

      (31) Lai, L.; Potts, J. R.; Zhan, D.;Wang, L.; Poh, C. K.; Tang, C.; ng, H.; Shen, Z.; Lin, J.; Ruoff, R. S. Energy Environ. Sci. 2012, 5, 7936. doi: 10.1039/c2ee21802j


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    13. [13]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    14. [14]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    16. [16]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    17. [17]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    18. [18]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(901)
  • Abstract views(1018)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return