Citation: XIAO Bo, LIU Shou-Qing. Photocatalytic Oxidation of Ammonia via an Activated Carbon-Nickel Ferrite Hybrid Catalyst under Visible Light Irradiation[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1697-1705. doi: 10.3866/PKU.WHXB201407111
-
The nickel atoms in a metal ferrite lattice inhibit photocatalytic activity with hydrogen peroxide. However, activated carbon bonded on nickel ferrite (AC-NiFe2O4) induces photocatalytic activity of nickel ferrite with hydrogen peroxide, enabling photo-Fenton catalytic oxidation of ammonia under visible-light irradiation in the presence of hydrogen peroxide. The AC-NiFe2O4 catalyst was characterized using X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy, and a vibrating sample magnetometer at room temperature. The photocatalytic tests showed that the ammonia degradation efficiency approached 91.0% in the presence of the AC-NiFe2O4 catalyst, whereas the efficiency was only 24.0% without the catalyst under similar conditions over 10 h. Another test showed that the single NiFe2O4 catalyst achieved a degradation efficiency of only 30.0% under similar conditions, indicating that activated carbon can accelerate the rate of ammonia oxidation. Exploration of the oxidation mechanism showed that the oxidation pathway involves an HONH2 intermediate, forming nitrite ions. Kinetic studies showed that the oxidation of ammonia follows a pseudo-first order kinetic law, with a rate constant of 3.538×10-3 min-1. The catalyst was used in eight runs, and shown to be stable, recoverable, separable, and reusable, suggesting that it has potential applications in the disposal of ammonia.
-
-
[1]
(1) Costa, R. C. C.; Lelis, M. F. F.; Oliveira, L. C. A.; Fabris, J. D.; Ardisson, J. D.; Rios, R. R. V. A.; Silva, C. N.; La , R. M. J. Hazard. Mater. B 2006, 129, 171. doi: 10.1016/j.jhazmat.2005.08.028
-
[2]
(2) Liu, S. Q.; Feng, L. R.; Xu, N.; Chen, Z. G.;Wang, X. M. Chem. Eng. J. 2012, 203, 432. doi: 10.1016/j.cej.2012.07.071
-
[3]
(3) Fu, Y. S.; Chen, H. Q.; Sun, X. Q.;Wang, X. AIChE J. 2012, 58, 3298. doi: 10.1002/aic.13716
-
[4]
(4) Pan, X.; Fu, Y.;Wang, L.;Wang, X. Chem. Eng. J. 2012, 149, 195.
-
[5]
(5) Nguyen, T. D.; Phan, N. H.; Do, M. H.; N , K. T. J. Hazard. Mater. 2011, 185, 653. doi: 10.1016/j.jhazmat.2010.09.068
-
[6]
(6) Xu, X.;Wang, X. J.; Hu, Z. H.; Liu, Y .F.;Wang, C. C.; Zhao, G. H. Acta Phys. -Chim. Sin. 2010, 26, 79. [徐鑫, 王晓静,胡中华, 刘亚菲, 王晨晨, 赵国华. 物理化学学报, 2010, 26, 79.] doi: 10.3866/PKU.WHXB20100131
-
[7]
(7) Yang, H. P.; Zhang, Y. C.; Fu, X. F.; Song, S. S.;Wu, J. M. Acta Phys. -Chim. Sin. 2013, 29, 1327. [杨汉培, 张颖超, 傅小飞, 宋双双, 吴俊明. 物理化学学报, 2013, 29, 1327.] doi: 10.3866/PKU.WHXB201303212
-
[8]
(8) Long, M.; Cong, Y.; Li, X. K.; Cui, Z.W.; Dong, Z. J.; Yuan, G. M. Acta Phys. -Chim. Sin. 2013, 29, 1344. [龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 物理化学学报, 2013, 29, 1344.] doi: 10.3866/PKU.WHXB201303263
-
[9]
(9) Xing,W. N.; Ni, L.; Yan, X. S.; Liu, X. L.; Luo, Y. Y.; Lu, Z. Y.; Yan, Y. S.; Huo, P.W. Acta Phys. -Chim. Sin. 2014, 30, 141. [邢伟男, 倪良, 颜学升, 刘馨琳, 罗莹莹, 逯子扬, 闫永胜, 霍鹏伟. 物理化学学报, 2014, 30, 141.] doi: 10.3866/PKU.WHXB201311211
-
[10]
(10) Ou, H. H.; Hoffmann, M. R.; Liao, C. H.; Hong, J. H.; Lo, S. L. Appl. Catal. B 2010, 99, 74. doi: 10.1016/j.apcatb.2010.06.002
-
[11]
(11) Bonsen, E. M.; Schroeter, S.; Jacobs, H.; Broekaert, J. A. C. Chemosphere 1997, 35, 1431. doi: 10.1016/S0045-6535(97)00216-6
-
[12]
(12) Altomare, M.; Chiarello, G. L.; Costa, A.; Guarino, M.; Selli, E.; Chem. Eng. J. 2012, 191, 394. doi: 10.1016/j.cej.2012.03.037
-
[13]
(13) Kominami, H.; Nishimune, H.; Ohta, Y.; Arakawa, Y.; Inaba, T. Appl. Catal. B 2012, 111, 297.
-
[14]
(14) Kolinko, P. A.; Kozlov, D. V. Appl. Catal. B 2009, 90, 126. doi: 10.1016/j.apcatb.2009.03.001
-
[15]
(15) Boulinguiez, B.; Bouzaza, A.; Merabet, S.;Wolbert, D. J. Photochem. Photobiol. A 2008, 200, 254. doi: 10.1016/j.jphotochem.2008.08.005
-
[16]
(16) Zhu, X.; Nanny, M. A.; Butler, E. C. Water Res. 2008, 42, 2736. doi: 10.1016/j.watres.2008.02.003
-
[17]
(17) Shavisi, Y.; Sharifnia, S.; Hosseini, S. N.; Khadivi, M. A. J. Ind. Eng. Chem. 2014, 20, 278. doi: 10.1016/j.jiec.2013.03.037
-
[18]
(18) Dong, Y.; Bai, Z.; Liu, R.; Zhu, T. Atmos. Environ. 2007, 41, 3182. doi: 10.1016/j.atmosenv.2006.08.056
-
[19]
(19) Geng, Q.; Guo, Q.; Cao, C.; Zhang, Y.;Wang, L. Ind. Eng. Chem. Res. 2008, 47, 4363. doi: 10.1021/ie800274g
-
[20]
(20) u, H. H.; Liao, C. H.; Liou, Y. H.; Hong, J. H.; Lo, S. L. Environ. Sci. Technol. 2008, 42, 4507. doi: 10.1021/es703211u
-
[21]
(21) Altomare, M.; Selli, E. Catalysis Today 2013, 209, 127. doi: 10.1016/j.cattod.2012.12.001
-
[22]
(22) Niedzielski, P.; Kurzyca, I.; Siepak, J. Anal. Chim. Acta 2006, 577, 220. doi: 10.1016/j.aca.2006.06.057
-
[23]
(23) Lazarevic, Z. ?.; Jovalekic, C.; Recnik, A.; Ivanovski, V. N.; Milutinovic, A.; Romcevic, M.; Pavlovic, M. B.; Cekic, B.; Romcevic, N. ?. Mater. Res. Bull. 2013, 48, 404. doi: 10.1016/j.materresbull.2012.10.061
-
[24]
(24) Klug, H. P.; Alexander, L. E. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed.;Wiley: New York, 1974.
-
[25]
(25) Mouallem-Bahout, M.; Bertrand, S.; PeHa, O. J. Solid State Chem. 2005, 178, 1080. doi: 10.1016/j.jssc.2005.01.009
-
[26]
(26) Hoigne, J.; Bader, H. Environ. Sci. Technol. 1978, 12, 79. doi: 10.1021/es60137a005
-
[27]
(27) Liao, Q.; Sun, J.; Gao, L. Colloids Surf. A 2009, 345, 95. doi: 10.1016/j.colsurfa.2009.04.037
-
[28]
(28) Romero, A.; Santos, A.; Vicente, F. J. Hazard. Mater. 2009, 162, 785. doi: 10.1016/j.jhazmat.2008.05.123
-
[29]
(29) Ramirez, J. H.; Maldonado-Hódar, F. J.; Pérez-Cadenas, A. F.; Moreno-Castilla, C.; Costa, C. A.; Madeira, L. M. Appl. Catal. B 2007, 75, 312. doi: 10.1016/j.apcatb.2007.05.003
-
[30]
(30) Lam, S.W.; Chiang, K.; Lim, T. M.; Amal, R.; Low, G. K. C. J. Catal. 2005, 234, 292. doi: 10.1016/j.jcat.2005.06.014
-
[31]
(31) Bacardit, J.; Sto1tzner, J.; Chamarro, E. Eng. Chem. Res. 2007, 46, 7615. doi: 10.1021/ie070154o
-
[32]
(32) Machulek, A., Jr.; Moraes, J. E. F.; Carolina, Vautier-Gion .; Silverio, C. A.; Friedrich, L. C.; Nascimento, C. A. O.; nzalez, M. C.; Quina, F. H. Environ. Sci. Technol. 2007, 41, 8459. doi: 10.1021/es071884q
-
[33]
(33) Li, M.; Feng, C.; Zhang, Z.; Zhao, R.; Lei, X.; Chen, R.; Sugiura, N. Electrochim. Acta 2009, 55, 159. doi: 10.1016/j.electacta.2009.08.027
-
[34]
(34) Zhu, X.; Castleberry, S. R.; Nanny, M. A.; Butler, E. C. Environ. Sci. Technol. 2005, 39, 3784. doi: 10.1021/es0485715
-
[35]
(35) Lee, J.; Park, H.; Choi,W. Environ. Sci. Technol. 2002, 36, 5462. doi: 10.1021/es025930s
-
[36]
(36) Velasco, L. F.; Fonseca, I. M.; Parra, J. B.; Lima, J.; Ania, C. O. Carbon 2012, 50, 249. doi: 10.1016/j.carbon.2011.08.042
-
[37]
(37) Leary, R.;Westwood, A. Carbon 2011, 49, 741. doi: 10.1016/j.carbon.2010.10.010
-
[38]
(38) Liu, S. Q.; Xiao, B.; Feng, L. R.; Zhou, S. S.; Chen, Z. G.; Liu, C. B.; Chen, F.;Wu, Z. Y.; Xu N.; Oh,W. C.; Meng, Z. D. Carbon 2013, 64, 197. doi: 10.1016/j.carbon.2013.07.052
-
[39]
(39) Guo, S.; Zhang, G. K.; Guo, Y. D.; Yu, J. C. Carbon 2013, 60, 437. doi: 10.1016/j.carbon.2013.04.058
-
[1]
-
-
[1]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[2]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[3]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[4]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[5]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[6]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[7]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[8]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[9]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[10]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[11]
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
-
[12]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[13]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[14]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[15]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[16]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[17]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[18]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[19]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[20]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[1]
Metrics
- PDF Downloads(445)
- Abstract views(702)
- HTML views(8)