Citation: ZHONG Jin-Lian, PAN Hong, LUO Xu-Zhong, HONG San-Guo, ZHANG Ning, HUANG Jian-Bin. Two-Component Supramolecular Organogels Formed from L-Phenylalanine Derivatives and Aliphatic Amines[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1688-1696. doi: 10.3866/PKU.WHXB201407041
-
A series of monochain L-phenylalanine derivatives were synthesized. L-Phenylalanine derivatives have no gelation abilities, but two-component systems consisting of L-phenylalanine derivatives and aliphatic amines can gelate various organic liquids. The structures of the aggregates in the organogels were investigated using Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) spectroscopy, smallangle X-ray scattering (SAXS), rheological methods, and scanning electron microscopy (SEM). The rheological measurements showed that the steady-state value of the storage elastic modulus (G') was about 10 times larger than that of the loss elastic modulus (G"), indicating that the organogels have od mechanical properties and gel-like characteristics. The SEM, FT-IR, and 1H NMR results showed that two-component organogels can self-assemble into fibrous or lamellar aggregates in organic liquids through acid-base interactions, intermolecular hydrogen bonding of amide groups, and van der Waals interactions of long alkyl chains. The FT-IR and NMR spectra showed that the hydrogen-bonding and acid-base interactions were the main driving forces for the formation of self-assembled gels. The SAXS results indicated that the gelator molecules assembled into ordered lamellar structures in organic liquids. The ordered lamellar aggregates are juxtaposed and interlocked by van der Waals interactions to form a fibrous superstructure and are finally immobilized in the organic liquid.
-
-
[1]
(1) Babu, S. S.; Prasanthkumar, S.; Ajayaghosh, A. Angew. Chem. Int. Edit. 2012, 51, 1766. doi: 10.1002/anie.v51.8
-
[2]
(2) Chen, X. L.; Liu, K. Q.; He, P. L.; Zhang, H. L.; Fang, Y. Langmuir 2012, 28, 9275. doi: 10.1021/la300856h
-
[3]
(3) Delbecq, F.; Kaneko, N.; Endo, H.; Kawai, T. J. Colloid Interface Sci. 2012, 384, 94. doi: 10.1016/j.jcis.2012.06.045
-
[4]
(4) Xin, F. F.; Zhang, H. C.; Hao, B. X.; Sun, T.; Kong, L.; Li, Y. M.; Hou, Y. H.; Li, S. Y.; Zhang, Y.; Hao, A. Y. Colloids and Surfaces A: Physicochem. Eng. Aspects 2012, 410, 18. doi: 10.1016/j.colsurfa.2012.06.008
-
[5]
(5) Steed, J.W. Chem. Commun. 2011, 47, 1379. doi: 10.1039/c0cc03293j
-
[6]
(6) Piepenbrock, M. O. M.; Lloyd, G. O.; Clarke, N.; Steed, J.W. Chemical Reviews 2010, 110, 1960. doi: 10.1021/cr9003067
-
[7]
(7) Abdallah, D. J.;Weiss, R. G. Langmuir 2000, 16, 352. doi: 10.1021/la990795r
-
[8]
(8) Tsou, C. C.; Sun, S. S. Organic Letters 2006, 8, 387. doi: 10.1021/ol052542x
-
[9]
(9) Asai, M.; Sugiyasu, K.; Fujita, N.; Shinkai, S. Chemistry Letters 2004, 33, 120. doi: 10.1246/cl.2004.120
-
[10]
(10) Amdursky, N.; Gazit, E.; Rosenman, G. Advanced Materials 2010, 22, 2311. doi: 10.1002/adma.200904034
-
[11]
(11) Imato, K.; Nishihara, M.; Kanehara, T.; Amamoto, Y.; Takahara, A.; Otsuka, H. Angew. Chem. Int. Edit. 2012, 51, 1138. doi: 10.1002/anie.201104069
-
[12]
(12) Zhang, M. M.; Xu, D. H.; Yan, X. Z.; Chen, J. Z.; Dong, S. Y.; Zheng, B.; Huang, F. H. Angew. Chem. Int. Edit. 2012, 124, 7117. doi: 10.1002/ange.201203063
-
[13]
(13) Luo, X. Z.; Xiao,W.; Li, Z. F;Wang, Q.; Zhong, J. L. J. Colloid Interface Sci. 2009, 329, 372. doi: 10.1016/j.jcis.2008.10.013
-
[14]
(14) De Loos, M.; Van Esch, J.; Kellogg, R. M.; Feringa, B. L. Angew. Chem. Int. Edit. 2001, 40, 613. doi: 10.1002/1521-3773(20010202)40:3<>1.0.CO;2-A
-
[15]
(15) Friggeri, A.; Gronwald, O.; Van Bommel, K. J. C.; Shinkai, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 2002, 124, 10754. doi: 10.1021/ja012585i
-
[16]
(16) Ihara, H.; Sakurai, T.; Yamada, T.; Hashimoto, T.; Takafuji, M.; Sagaura, T.; Hachisako, H. Langmuir 2002, 18, 7120. doi: 10.1021/la025535f
-
[17]
(17) George, M.;Weiss, R. G. Langmuir 2003, 19, 1017. doi: 10.1021/la026639t
-
[18]
(18) Hanabusa, K.; Miki, T.; Taguchi, Y.; Koyama, T.; Shirai, H. J. Chem. Soc. Chem. Commun. 1993, 1382.
-
[19]
(19) Suzuki, M.; Saito, H.; Shirai, H.; Hanabusa, K. New J. Chem. 2007, 31, 1654. doi: 10.1039/b705888h
-
[20]
(20) Luo, X. Z.; Chen, Z. X.; Xiao,W.; Li, Z. F.;Wang, Q.; Zhong, J. L. J. Colloid Interface Sci. 2011, 362, 113. doi: 10.1016/j.jcis.2011.06.016
-
[21]
(21) George, M.;Weiss, R. G. J. Am. Chem. Soc. 2001, 123, 10393. doi: 10.1021/ja016819+
-
[22]
(22) Luo, X. Z.; Liu, B.; Liang, Y. Q. Chem. Commun. 2001, 1556.
-
[23]
(23) Partridge, K. S.; Smith, D. K.; Dykes, G. M.; McGrail, P. T. Chem. Commun. 2001, 319.
-
[24]
(24) Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M. Langmuir 2004, 20, 7070. doi: 10.1021/la048751s
-
[25]
(25) Takahashi, A.; Sakai, M.; Kuto, T. Polym. J. 1980, 12, 335. doi: 10.1295/polymj.12.335
-
[26]
(26) Luo, X. Z.;Wang, Q.; Zhong, J. L.; Pan, H.; Chen, Z. X. Acta Phys. -Chim. Sin. 2011, 27 (7), 1719. [罗序中, 王琼, 钟金莲, 潘虹, 陈志兴. 物理化学学报, 2011, 27 (7), 1719.] doi: 10.3866/PKU.WHXB20110720
-
[27]
(27) Luo, X. Z.; Li, Z. F.; Xiao,W.;Wang, Q.; Zhong, J. L. J. Colloid Interface Sci. 2009, 336, 803. doi: 10.1016/j.jcis.2009.04.056
-
[28]
(28) Van Esch, J. H.; Kelloge, R. H.; Feringa, B. L. Tetrahedron Lett. 1997, 38, 281. doi: 10.1016/S0040-4039(96)02292-7
-
[29]
(29) George, M.; Snyder, S.; Terech, P; Glinka, J.;Weiss, R. G. J. Am. Chem. Soc. 2003, 125, 10275. doi: 10.1021/ja0362407
-
[30]
(30) Ikeda, S.; Nishinari, K. Food Hydro. 2001, 15, 401. doi: 10.1016/S0268-005X(01)00052-2
-
[31]
(31) Suzuki, M.; Yumoto, M.; Shirai, H.; Hanabusa, K. Organic & Biomolecular Chemistry 2005, 3, 3073. doi: 10.1039/b507540h
-
[32]
(32) Huang, X.; Terech, P.; Raghavan, S. R.;Weiss, R. G. J. Am. Chem. Soc. 2005, 127, 4336. doi: 10.1021/ja0426544
-
[33]
(33) Clegg, R. S.; Hutchison, J. E. Langmuir 1996, 12, 5239. doi: 10.1021/la960825f
-
[34]
(34) Fujimoto, Y.; Ozaki, Y.; Kato, T.; Matsumoto, N.; Iriyama, K. Chem. Phys. Lett. 1992, 196, 347. doi: 10.1016/0009-2614(92)85980-O
-
[35]
(35) George, S. J.; Ajayaghosh, A. Chem. Eur. J. 2005, 11, 3217.
-
[36]
(36) Basit, H.; Pal, A.; Sen, S.; Bhattacharya, S. Chem. Eur. J. 2008, 14, 6534. doi: 10.1002/chem.v14:21
-
[37]
(37) Duncan, D. C.; Whitten, D. G. Langmuir 2000, 16, 6445. doi: 10.1021/la0001631
-
[38]
(38) Snip, E.; Shinkai, S.; Reinhoudt, D. N. Tetrahedron Lett. 2001, 42, 2153. doi: 10.1016/S0040-4039(01)00095-8
-
[39]
(39) Abdallah, D. J.; Sirchio, S. A.;Weiss, R. G. Langmuir 2000, 16, 7558. doi: 10.1021/la000730k
-
[40]
(40) Kunitake, T. Angew. Chem. Int. Edit. 1992, 31, 709.
-
[1]
-
-
[1]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[2]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[3]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[4]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[5]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[6]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[7]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[8]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[9]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[10]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[11]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[12]
Tongyu Zheng , Teng Li , Xiaoyu Han , Yupei Chai , Kexin Zhao , Quan Liu , Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107
-
[13]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[14]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[15]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[16]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[17]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[18]
Juan Hou , Chen Zhou , Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023
-
[19]
Limin Shao , Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086
-
[20]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[1]
Metrics
- PDF Downloads(434)
- Abstract views(803)
- HTML views(40)