Citation: ZHONG Jin-Lian, PAN Hong, LUO Xu-Zhong, HONG San-Guo, ZHANG Ning, HUANG Jian-Bin. Two-Component Supramolecular Organogels Formed from L-Phenylalanine Derivatives and Aliphatic Amines[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1688-1696. doi: 10.3866/PKU.WHXB201407041 shu

Two-Component Supramolecular Organogels Formed from L-Phenylalanine Derivatives and Aliphatic Amines

  • Received Date: 31 March 2014
    Available Online: 4 July 2014

    Fund Project:

  • A series of monochain L-phenylalanine derivatives were synthesized. L-Phenylalanine derivatives have no gelation abilities, but two-component systems consisting of L-phenylalanine derivatives and aliphatic amines can gelate various organic liquids. The structures of the aggregates in the organogels were investigated using Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) spectroscopy, smallangle X-ray scattering (SAXS), rheological methods, and scanning electron microscopy (SEM). The rheological measurements showed that the steady-state value of the storage elastic modulus (G') was about 10 times larger than that of the loss elastic modulus (G"), indicating that the organogels have od mechanical properties and gel-like characteristics. The SEM, FT-IR, and 1H NMR results showed that two-component organogels can self-assemble into fibrous or lamellar aggregates in organic liquids through acid-base interactions, intermolecular hydrogen bonding of amide groups, and van der Waals interactions of long alkyl chains. The FT-IR and NMR spectra showed that the hydrogen-bonding and acid-base interactions were the main driving forces for the formation of self-assembled gels. The SAXS results indicated that the gelator molecules assembled into ordered lamellar structures in organic liquids. The ordered lamellar aggregates are juxtaposed and interlocked by van der Waals interactions to form a fibrous superstructure and are finally immobilized in the organic liquid.

  • 加载中
    1. [1]

      (1) Babu, S. S.; Prasanthkumar, S.; Ajayaghosh, A. Angew. Chem. Int. Edit. 2012, 51, 1766. doi: 10.1002/anie.v51.8

    2. [2]

      (2) Chen, X. L.; Liu, K. Q.; He, P. L.; Zhang, H. L.; Fang, Y. Langmuir 2012, 28, 9275. doi: 10.1021/la300856h

    3. [3]

      (3) Delbecq, F.; Kaneko, N.; Endo, H.; Kawai, T. J. Colloid Interface Sci. 2012, 384, 94. doi: 10.1016/j.jcis.2012.06.045

    4. [4]

      (4) Xin, F. F.; Zhang, H. C.; Hao, B. X.; Sun, T.; Kong, L.; Li, Y. M.; Hou, Y. H.; Li, S. Y.; Zhang, Y.; Hao, A. Y. Colloids and Surfaces A: Physicochem. Eng. Aspects 2012, 410, 18. doi: 10.1016/j.colsurfa.2012.06.008

    5. [5]

      (5) Steed, J.W. Chem. Commun. 2011, 47, 1379. doi: 10.1039/c0cc03293j

    6. [6]

      (6) Piepenbrock, M. O. M.; Lloyd, G. O.; Clarke, N.; Steed, J.W. Chemical Reviews 2010, 110, 1960. doi: 10.1021/cr9003067

    7. [7]

      (7) Abdallah, D. J.;Weiss, R. G. Langmuir 2000, 16, 352. doi: 10.1021/la990795r

    8. [8]

      (8) Tsou, C. C.; Sun, S. S. Organic Letters 2006, 8, 387. doi: 10.1021/ol052542x

    9. [9]

      (9) Asai, M.; Sugiyasu, K.; Fujita, N.; Shinkai, S. Chemistry Letters 2004, 33, 120. doi: 10.1246/cl.2004.120

    10. [10]

      (10) Amdursky, N.; Gazit, E.; Rosenman, G. Advanced Materials 2010, 22, 2311. doi: 10.1002/adma.200904034

    11. [11]

      (11) Imato, K.; Nishihara, M.; Kanehara, T.; Amamoto, Y.; Takahara, A.; Otsuka, H. Angew. Chem. Int. Edit. 2012, 51, 1138. doi: 10.1002/anie.201104069

    12. [12]

      (12) Zhang, M. M.; Xu, D. H.; Yan, X. Z.; Chen, J. Z.; Dong, S. Y.; Zheng, B.; Huang, F. H. Angew. Chem. Int. Edit. 2012, 124, 7117. doi: 10.1002/ange.201203063

    13. [13]

      (13) Luo, X. Z.; Xiao,W.; Li, Z. F;Wang, Q.; Zhong, J. L. J. Colloid Interface Sci. 2009, 329, 372. doi: 10.1016/j.jcis.2008.10.013

    14. [14]

      (14) De Loos, M.; Van Esch, J.; Kellogg, R. M.; Feringa, B. L. Angew. Chem. Int. Edit. 2001, 40, 613. doi: 10.1002/1521-3773(20010202)40:3<>1.0.CO;2-A

    15. [15]

      (15) Friggeri, A.; Gronwald, O.; Van Bommel, K. J. C.; Shinkai, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 2002, 124, 10754. doi: 10.1021/ja012585i

    16. [16]

      (16) Ihara, H.; Sakurai, T.; Yamada, T.; Hashimoto, T.; Takafuji, M.; Sagaura, T.; Hachisako, H. Langmuir 2002, 18, 7120. doi: 10.1021/la025535f

    17. [17]

      (17) George, M.;Weiss, R. G. Langmuir 2003, 19, 1017. doi: 10.1021/la026639t

    18. [18]

      (18) Hanabusa, K.; Miki, T.; Taguchi, Y.; Koyama, T.; Shirai, H. J. Chem. Soc. Chem. Commun. 1993, 1382.

    19. [19]

      (19) Suzuki, M.; Saito, H.; Shirai, H.; Hanabusa, K. New J. Chem. 2007, 31, 1654. doi: 10.1039/b705888h

    20. [20]

      (20) Luo, X. Z.; Chen, Z. X.; Xiao,W.; Li, Z. F.;Wang, Q.; Zhong, J. L. J. Colloid Interface Sci. 2011, 362, 113. doi: 10.1016/j.jcis.2011.06.016

    21. [21]

      (21) George, M.;Weiss, R. G. J. Am. Chem. Soc. 2001, 123, 10393. doi: 10.1021/ja016819+

    22. [22]

      (22) Luo, X. Z.; Liu, B.; Liang, Y. Q. Chem. Commun. 2001, 1556.

    23. [23]

      (23) Partridge, K. S.; Smith, D. K.; Dykes, G. M.; McGrail, P. T. Chem. Commun. 2001, 319.

    24. [24]

      (24) Hirst, A. R.; Smith, D. K.; Feiters, M. C.; Geurts, H. P. M. Langmuir 2004, 20, 7070. doi: 10.1021/la048751s

    25. [25]

      (25) Takahashi, A.; Sakai, M.; Kuto, T. Polym. J. 1980, 12, 335. doi: 10.1295/polymj.12.335

    26. [26]

      (26) Luo, X. Z.;Wang, Q.; Zhong, J. L.; Pan, H.; Chen, Z. X. Acta Phys. -Chim. Sin. 2011, 27 (7), 1719. [罗序中, 王琼, 钟金莲, 潘虹, 陈志兴. 物理化学学报, 2011, 27 (7), 1719.] doi: 10.3866/PKU.WHXB20110720

    27. [27]

      (27) Luo, X. Z.; Li, Z. F.; Xiao,W.;Wang, Q.; Zhong, J. L. J. Colloid Interface Sci. 2009, 336, 803. doi: 10.1016/j.jcis.2009.04.056

    28. [28]

      (28) Van Esch, J. H.; Kelloge, R. H.; Feringa, B. L. Tetrahedron Lett. 1997, 38, 281. doi: 10.1016/S0040-4039(96)02292-7

    29. [29]

      (29) George, M.; Snyder, S.; Terech, P; Glinka, J.;Weiss, R. G. J. Am. Chem. Soc. 2003, 125, 10275. doi: 10.1021/ja0362407

    30. [30]

      (30) Ikeda, S.; Nishinari, K. Food Hydro. 2001, 15, 401. doi: 10.1016/S0268-005X(01)00052-2

    31. [31]

      (31) Suzuki, M.; Yumoto, M.; Shirai, H.; Hanabusa, K. Organic & Biomolecular Chemistry 2005, 3, 3073. doi: 10.1039/b507540h

    32. [32]

      (32) Huang, X.; Terech, P.; Raghavan, S. R.;Weiss, R. G. J. Am. Chem. Soc. 2005, 127, 4336. doi: 10.1021/ja0426544

    33. [33]

      (33) Clegg, R. S.; Hutchison, J. E. Langmuir 1996, 12, 5239. doi: 10.1021/la960825f

    34. [34]

      (34) Fujimoto, Y.; Ozaki, Y.; Kato, T.; Matsumoto, N.; Iriyama, K. Chem. Phys. Lett. 1992, 196, 347. doi: 10.1016/0009-2614(92)85980-O

    35. [35]

      (35) George, S. J.; Ajayaghosh, A. Chem. Eur. J. 2005, 11, 3217.

    36. [36]

      (36) Basit, H.; Pal, A.; Sen, S.; Bhattacharya, S. Chem. Eur. J. 2008, 14, 6534. doi: 10.1002/chem.v14:21

    37. [37]

      (37) Duncan, D. C.; Whitten, D. G. Langmuir 2000, 16, 6445. doi: 10.1021/la0001631

    38. [38]

      (38) Snip, E.; Shinkai, S.; Reinhoudt, D. N. Tetrahedron Lett. 2001, 42, 2153. doi: 10.1016/S0040-4039(01)00095-8

    39. [39]

      (39) Abdallah, D. J.; Sirchio, S. A.;Weiss, R. G. Langmuir 2000, 16, 7558. doi: 10.1021/la000730k

    40. [40]

      (40) Kunitake, T. Angew. Chem. Int. Edit. 1992, 31, 709.


  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    4. [4]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    7. [7]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    8. [8]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    12. [12]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    13. [13]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    16. [16]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    17. [17]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    18. [18]

      Juan Hou Chen Zhou Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023

    19. [19]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    20. [20]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

Metrics
  • PDF Downloads(434)
  • Abstract views(803)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return