Citation: YANG Peng, TAN Fu-Rui, ZHANG Jing, JIN He-Hua, LI Hong-Bo, LIU Chun-Hua, LI Qing-Wen. Effects of Pore-Size Range and Composition of Polysaccharide Gels on Flow Behaviors and Selective Sorting of Single-Walled Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1764-1770. doi: 10.3866/PKU.WHXB201407032 shu

Effects of Pore-Size Range and Composition of Polysaccharide Gels on Flow Behaviors and Selective Sorting of Single-Walled Carbon Nanotubes

  • Received Date: 5 May 2014
    Available Online: 3 July 2014

    Fund Project:

  • We used gel-column chromatography to show the effects of the pore-size range and chemical composition of porous polysaccharide gels on the flow characteristics and metal/semiconductor (m/s) separation of dispersed single-walled carbon nanotubes (SWCNTs). Comparative studies of the flow behaviors of dispersed SWCNTs in a series of Sephacryl gels with different pore sizes showed that a small pore-size range increased the interaction strength of SWCNTs with gels, leading to rapid flow of thicker metallic (m-)SWCNTs through gel beads, and the selective entrapment of thinner semiconducting (s-)SWCNTs. We also found that the effect of the gel composition was more important than that of the gel porosity on the sorting of SWCNTs. When the amine group in the dextran-based Sephacryl gel was replaced by agarose, e.g., Superdex 200 or Sepharose 2B gel, the interaction with the dispersed SWCNTs was enhanced, resulting in slowing down of both the m- and s- SWCNTs throughout the gel, and obvious deterioration in the selectivity for, and purity of, the s-SWCNTs. In contrast, Sephadex G100 gel, which has one dextran group functionalized by hydrophobic epoxypropane, yielded very weak interactions with SWCNTs, leading to direct drainage of both types of SWCNT, despite its fine pore size, similar to that of Sephacryl S100. We therefore propose that the gel pore size and composition exerted a synergistic effect in verning the m/s sorting of SWCNTs with high selectivity, purity, and efficiency.

  • 加载中
    1. [1]

      (1) Saito, R.; Dresslhaus, G.; Dresselhaus, M. S. Physical Review B 2000, 61 (4), 2981. doi: 10.1103/PhysRevB.61.2981

    2. [2]

      (2) Ryabenko, A. G.; Dorofeeva, T. V.; Zvereva, G. I. Carbon 2004, 42 (8-9), 1523. doi: 10.1016/j.carbon.2004.02.005

    3. [3]

      (3) Hecht, D. S.; Hu, L. B.; Irvin. G. Adv. Mater. 2011, 23 (13), 1482. doi: 10.1002/adma.201003188

    4. [4]

      (4) Kong, J.; Franklin, N. R.; Zhou, C.W.; Chapline, M. G.; Peng, S.; Cho, K. J.; Dai, H. J. Science 2000, 287 (5453), 622. doi: 10.1126/science.287.5453.622

    5. [5]

      (5) Javey, A.; Guo, J.;Wang, Q.; Lundstrom, M.; Dai, H. J. Nature 2003, 424, 654. doi: 10.1038/nature01797

    6. [6]

      (6) Wind, S. J.; Appenzeller, J.; Avouris, P. Phys. Rev. Lett. 2003, 91, 058301. doi: 10.1103/PhysRevLett.91.058301

    7. [7]

      (7) Jaisi, D. P.; Saleh, N. B.; Blake, R. E.; Elimelech, M. Environmental Science & Technology 2008, 42, 8317. doi: 10.1021/es801641v

    8. [8]

      (8) Jaisi, D. P.; Elimelech, M. Environmental Science & Technology 2009, 43, 9161.

    9. [9]

      (9) Li, H. B.; Zhang, J.; Jin, H. H.; Li, Q.W. Acta Phys. -Chim. Sin. 2012, 26 (10), 2447. [李红波, 张静, 金赫华, 李清文. 物理化学学报, 2012, 26 (10), 2447.] doi: 10.3866/PKU.WHXB201209041

    10. [10]

      (10) Arnold, K.; Hennrich, F.; Krupke, R.; Lebedkin, S.; Kappes, M. M. Physica Status Solidi B-Basic Solid State Physics 2006, 243, 3073.

    11. [11]

      (11) Heller, D. A.; Mayrhofer, R. M.; Baik, S.; Grinkova, Y. V.; Usrey, M. L.; Strano, M. S. Journal of the American Chemical Society 2004, 126, 14567. doi: 10.1021/ja046450z

    12. [12]

      (12) Moshammer, K.; Hennrich, F.; Kappes, M. M. Nano Research 2009, 2, 599. doi: 10.1007/s12274-009-9057-0

    13. [13]

      (13) Tanaka, T.; Urabe, Y.; Nishide, D.; Kataura, H. Applied Physics Express 2009, 2 (12).

    14. [14]

      (14) Liu, H.; Feng, Y.; Tanaka, T.; Urabe, Y.; Kataura, H. Journal of Physical Chemistry C 2010, 114, 9270.

    15. [15]

      (15) Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Nature Communications 2011, 2, 309.

    16. [16]

      (16) Gui, H.; Li, H.; Tan, F.; Jin, H.; Zhang, J.; Li, Q. Carbon 2012, 50, 332.

    17. [17]

      (17) McCormick, T. J.; Foley, J. P.; Lloyd, D. K. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2003, 785, 1. doi: 10.1016/S1570-0232(02)00756-0

    18. [18]

      (18) Zhao, P.; Einarsson, E.; Xiang, R.; Murakami, Y.; Maruyama, S. Journal of Physical Chemistry C 2010, 114, 4831. doi: 10.1021/jp910959s

    19. [19]

      (19) Tummala, N. R.; Striolo, A. Physical Review E 2009, 80, 021408.

    20. [20]

      (20) Tummala, N. R.; Striolo, A. ACS Nano 2009, 3, 595. doi: 10.1021/nn8007756

    21. [21]

      (21) O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon,W. H.; Kittrell, C.; Ma, J. P.; Hauge, R. H.;Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593. doi: 10.1126/science.1072631

    22. [22]

      (22) Vaisman, L.;Wagner, H. D.; Marom, G. Advances in Colloid and Interface Science 2006, 128, 37.


  • 加载中
    1. [1]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    5. [5]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    6. [6]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    7. [7]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    8. [8]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    9. [9]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    12. [12]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    13. [13]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Qingfeng Zhang Shang-E Wei Hua Hou Xuan Zhao Zixuan Yang Lin Zhuang . Construction and Reform of the Structural Chemistry Curriculum and Textbooks under the Chemistry “101 Plan”: an In-Depth Exploration for Cultivating Top-Notch Innovative Talents. University Chemistry, 2024, 39(10): 38-44. doi: 10.12461/PKU.DXHX202409047

Metrics
  • PDF Downloads(453)
  • Abstract views(555)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return