Citation: GAO Wen-Xiu, WANG Hong-Lei, LI Shen-Min. Molecular Dynamics Simulation Study of Structural and Transport Properties of Methanol-Water Mixture in Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1625-1633. doi: 10.3866/PKU.WHXB201407031 shu

Molecular Dynamics Simulation Study of Structural and Transport Properties of Methanol-Water Mixture in Carbon Nanotubes

  • Received Date: 16 April 2014
    Available Online: 3 July 2014

    Fund Project:

  • Molecular dynamics simulations of a methanol-water mixture (molar ratio 1:1) were performed to determine the differences among the structural and transport properties in three carbon nanotube (CNT) systems: an equilibrium system, a system with an external pressure, and a system with a gradient electric field. The simulations showed that in both the equilibrium system and the system with an external pressure, the methanol-water mixture is clearly immiscible in the CNTs, with the water molecules distributed mainly around the tube axis, and the methanol molecules located near the tube wall; however, in the system with a gradient electric field, the hydrophobic CNTs become hydrophilic, and the phenomenon of methanol-water separation disappears. In contrast, unlike the unidirectional transport observed in the system with an external pressure, the particles move in two directions in the system with a gradient electric field, with a flow one order of magnitude larger than that in the corresponding external pressure system. However, in the system with a gradient electric field, the net flux is small, because the flows for the two directions are similar. There is thus a small flux difference between the system with an external pressure and the system with a gradient electric field.

  • 加载中
    1. [1]

      (1) Remy, T.; Saint Remi, J. C.; Singh, R.;Webley, P. A.; Baron, G. V.; Denayer, J. F. M. J. Phys. Chem. C 2011, 115 (16), 8117. doi: 10.1021/jp111615e

    2. [2]

      (2) Nakao, S. I.; Saitoh, F.; Asakura, T.; Toda, K.; Kimura, S. J. Membr. Sci. 1987, 30 (3), 273. doi: 10.1016/S0376-7388(00)80123-4

    3. [3]

      (3) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414 (6860), 188. doi: 10.1038/35102535

    4. [4]

      (4) Hinds, B. J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L. G. Science 2004, 303 (5654), 62. doi: 10.1126/science.1092048

    5. [5]

      (5) Holt, J. K.; Park, H. G.;Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Gri ropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006, 312 (5776), 1034. doi: 10.1126/science.1126298

    6. [6]

      (6) Liu, Y.; Consta, S.; ddard,W. A. J. Nanosci. Nanotechnol. 2010, 10 (6), 3834. doi: 10.1166/jnn.2010.1999

    7. [7]

      (7) Zhao,W. H.; Shang, B.; Du, S. P.; Yuan, L. F.; Yang, J. L.; Zeng, X. C. J. Chem. Phys. 2012, 137 (3), 034501. doi: 10.1063/1.4732313

    8. [8]

      (8) Tian, X. L.; Yang, Z. X.; Zhou, B.; Xiu, P.; Tu, Y. S. J. Chem. Phys. 2013, 138 (20), 204711. doi: 10.1063/1.4807484

    9. [9]

      (9) Service, R. F. Science 2006, 313 (5790), 1088. doi: 10.1126/science.313.5790.1088

    10. [10]

      (10) Corry, B. J. Phys. Chem. B 2008, 112 (5), 1427. doi: 10.1021/jp709845u

    11. [11]

      (11) ng, X. J.; Li, J. Y.; Lu, H. J.;Wan, R. Z.; Li, J. C.; Hu, J.; Fang, H. P. Nat. Nanotechnol. 2007, 2 (11), 709. doi: 10.1038/nnano.2007.320

    12. [12]

      (12) Guo, X. Q.; Su, J. Y.; Guo, H. X. Soft Matter 2012, 8 (4), 1010. doi: 10.1039/c1sm06509b

    13. [13]

      (13) Joseph, S.; Aluru, N. R. Phys. Rev. Lett. 2008, 101 (6), 064502. doi: 10.1103/PhysRevLett.101.064502

    14. [14]

      (14) Su, J. Y.; Guo, H. X. ACS Nano 2010, 5 (1), 351.(15) Wong-Ekkabut, J.; Miettinen, M. S.; Dias, C.; Karttunen, M. Nat. Nanotechnol. 2010, 5 (8), 555. doi: 10.1038/nnano.2010.152

    15. [15]

      (16) Ge, Z. P.; Shi, Y. C.; Li, X. Y. Acta Phys. -Chim. Sin. 2013, 29, 1655. [葛振朋, 石彦超, 李晓毅. 物理化学学报, 2013, 29, 1655.] doi: 10.3866/PKU.WHXB201305222

    16. [16]

      (17) Li, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys. -Chim. Sin. 2012, 28, 573. [李海兰, 贾玉香, 胡仰栋. 物理化学学报, 2012, 28, 573.] doi: 10.3866/PKU.WHXB201112191

    17. [17]

      (18) de Gennes, P. G.; Brochard-Wyart, F.; Quere, D. Capillarity and Wetting Phenomenon; Springer: New York, 2003.(19) Chaudhury, M. K.; Whitesides, G. M. Science 1992, 256 (5063), 1539. doi: 10.1126/science.256.5063.1539

    18. [18]

      (20) Lü, Y. J.; Chen, M. Acta Phys. -Chim. Sin. 2012, 28, 1070. [吕勇军, 陈民. 物理化学学报, 2012, 28, 1070.] doi: 10.3866/PKU.WHXB201202213

    19. [19]

      (21) Linke, H.; Alemán, B. J.; Melling, L. D.; Taormina, M. J.; Francis, M. J.; Dow-Hygelund, C. C.; Narayanan, V.; Taylor, R. P.; Stout, A. Phys. Rev. Lett. 2006, 96 (15), 154502. doi: 10.1103/PhysRevLett.96.154502

    20. [20]

      (22) Zheng, J.; Lennon, E. M.; Tsao, H. K.; Sheng, Y. J.; Jiang, S. J. Chem. Phys. 2005, 122 (21), 214702. doi: 10.1063/1.1908619

    21. [21]

      (23) ldsmith, J.; Hinds, B. J. J. Phys. Chem. C 2011, 115 (39), 19158. doi: 10.1021/jp201467y

    22. [22]

      (24) Wang, Y.; Zhao, Y. J.; Huang, J. P. J. Phys. Chem. B 2011, 115 (45), 13275. doi: 10.1021/jp2069557

    23. [23]

      (25) Thakur, S. K.; Chauhan, S. Adv. Appl. Sci. Res. 2011, 2 (2), 208.(26) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869

    24. [24]

      (27) Jorgensen,W. L.; Briggs, J. M.; Contreras, M. L. J. Phys. Chem. 1990, 94 (4), 1683. doi: 10.1021/j100367a084

    25. [25]

      (28) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Proteins: Struct. Funct. Bioinf. 2010, 78 (8), 1950.(29) Kalé, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. J. Comput. Phys. 1999, 151 (1), 283. doi: 10.1006/jcph.1999.6201

    26. [26]

      (30) Shevade, A. V.; Jiang, S.; Gubbins, K. E. J. Chem. Phys. 2000, 113 (16), 6933. doi: 10.1063/1.1309012

    27. [27]

      (31) Pollack, M.; Fair, R. B.; Shenderov, A. D. Appl. Phys. Lett. 2000, 77 (11), 1725. doi: 10.1063/1.1308534

    28. [28]

      (32) Hu, L.; Gruner, G.; ng, J.; Kim, C.; Hornbostel, B. Appl. Phys. Lett. 2007, 90 (9), 093124. doi: 10.1063/1.2561032

    29. [29]

      (33) Nakamura, Y.; Ohno, T. Chem. Phys. Lett. 2012, 539, 123.


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    16. [16]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    17. [17]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    18. [18]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(684)
  • Abstract views(828)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return