Citation: LI Jie-Bing, YI Yu, SHI Peng-Hui, WANG Qian, LI Deng-Xin, ASIF Hussain, YANG Ming. Facile Synthesis of Graphene-Cobalt Hydroxide Nanocomposite and Application in Degradation of Acid Orange 7[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1720-1726. doi: 10.3866/PKU.WHXB201407021 shu

Facile Synthesis of Graphene-Cobalt Hydroxide Nanocomposite and Application in Degradation of Acid Orange 7

  • Received Date: 14 April 2014
    Available Online: 2 July 2014

    Fund Project:

  • In this study, a cobalt hydroxide-reduced graphene oxide (Co(OH)2/r ) composite was synthesized by one-step self-assembly, and used as a catalyst in dye degradation. The catalyst was characterized using X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive Xray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The catalyst had well-distributed Co(OH)2 nanoparticles on the reduced graphene oxide surface. The catalytic performance of this hybrid material was investigated for the activation of peroxymonosulfate (PMS), and used to degrade acid orange 7 (AO7) dye in aqueous solution. The experimental results showed that the composite had high catalytic activity in the degradation of AO7, and 100% decomposition was achieved in less than 12 min. Total organic carbon (TOC) experiments indicated a high degree of mineralization, suggesting excellent catalytic activity. Stability tests showed that the catalyst was stable in the degradation of AO7 over several runs. AO7 was completely degraded in 16 min in the third run.

  • 加载中
    1. [1]

      (1) Neyens, E.; Baeyens, J. J. Hazard. Mater. 2003, 98 (1-3), 33.

    2. [2]

      (2) Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Catal. Today 1999, 53 (1), 51. doi: 10.1016/S0920-5861(99)00102-9

    3. [3]

      (3) Hu, L.; Yang, F.; Lu,W.; Hao, Y.; Yuan, H. Appl. Catal. B 2013, 134 -135 (2), 7.

    4. [4]

      (4) Melero, J. A.; Calleja, G.; Martínez, F.; Molina, R.; Pariente, M. I. Chem. Eng. J. 2007, 131 (1-3), 245.

    5. [5]

      (5) Chen, X.; Chen, J.; Qiao, X.;Wang, D.; Cai, X. Appl. Catal. B 2008, 80 (1-2), 116.

    6. [6]

      (6) Yao, Y.; Yang, Z.; Zhang, D.; Peng,W.; Sun, H.;Wang, S. Ind. Eng. Chem. Res. 2012, 51 (17), 6044. doi: 10.1021/ie300271p

    7. [7]

      (7) Anipsitakis, G. P.; Dionysiou, D. D. Environ. Sci. Technol. 2004, 38 (13), 3705. doi: 10.1021/es035121o

    8. [8]

      (8) Chan, K. H.; Chu,W. Water Res. 2009, 43 (9), 2513. doi: 10.1016/j.watres.2009.02.029

    9. [9]

      (9) Anipsitakis, G. P.; Dionysiou, D. D. Environ. Sci. Technol. 2003, 37 (20), 4790. doi: 10.1021/es0263792

    10. [10]

      (10) Shi, P.; Dai, X.; Zheng, H.; Li, D.; Yao,W.; Hu, C. Chem. Eng. J. 2014, 240 (5), 264.

    11. [11]

      (11) Anipsitakis, G. P.; Stathatos, E.; Dionysiou, D. D. J. Phys. Chem. B 2005, 109 (27), 13052. doi: 10.1021/jp052166y

    12. [12]

      (12) Zhang, Z.; Edwards, J. O. Inorg. Chem. 1992, 31 (17), 3514. doi: 10.1021/ic00043a007

    13. [13]

      (13) Kim, J.; Edwards, J. O. Inorg. Chim. Acta 1995, 235 (1-2), 9.

    14. [14]

      (14) Muller, J. G.; Zheng, P.; Rokita, S. E.; Burrows, C. J. J. Am. Chem. Soc. 1996, 118 (10), 2320. doi: 10.1021/ja952518m

    15. [15]

      (15) Zhang,W.; Tay, H. L.; Lim, S. S.;Wang, Y.; Zhong, Z.; Xu, R. Appl. Catal. B 2010, 95 (1-2), 93.

    16. [16]

      (16) Shukla, P.;Wang, S.; Singh, K.; Ang, H. M.; Tadé, M. O. Appl. Catal. B 2010, 99 (1-2), 163. doi: 10.1016/j.apcatb.2010.06.013

    17. [17]

      (17) Shukla, P. R.;Wang, S.; Sun, H.; Ang, H. M.; Tadé, M. Appl. Catal. B 2010, 100 (3-4), 529.

    18. [18]

      (18) Shukla, P.; Sun, H.;Wang, S.; Ang, H. M.; Tadé, M. O. Catal. Today 2011, 175 (1), 380. doi: 10.1016/j.cattod.2011.03.005

    19. [19]

      (19) Shukla, P.; Sun, H.;Wang, S.; Ang, H. M.; Tadé, M. O. Sep. Purif. Technol. 2011, 77 (2), 230. doi: 10.1016/j.seppur.2010.12.011

    20. [20]

      (20) Shi, P.; Su, R.; Zhu, S.; Zhu, M.; Li, D.; Xu, S. J. Hazard. Mater. 2012, 229 -230 (30), 331.

    21. [21]

      (21) Shi, P.; Su, R.;Wan, F.; Zhu, M.; Li, D.; Xu, S. Appl. Catal. B 2012, 123 -124 (23), 265.

    22. [22]

      (22) Yang, Q. J.; Choi, H.; Dionysiou, D. D. Appl. Catal. B 2007, 74 (1-2), 170. doi: 10.1016/j.apcatb.2007.02.001

    23. [23]

      (23) Zhao, J.; Zou, Y.; Zou, X.; Bai, T.; Liu, Y.; Gao, R.;Wang, D.; Li, G. D. Nanoscale 2014, 6 (13), 7255. doi: 10.1039/c4nr00002a

    24. [24]

      (24) Hu, Z. A.; Xie, Y. L.;Wang, Y. X.; Xie, L. J.; Fu, G. R.; Jin, X. Q.; Zhang, Z. Y.; Yang, Y. Y.;Wu, H. Y. The Journal of Physical Chemistry C 2009, 113 (28), 12502.

    25. [25]

      (25) El-Batlouni, H.; El-Rassy, H.; Al-Ghoul, M. J. Phys. Chem. A 2008, 112 (34), 7755. doi: 10.1021/jp804569b

    26. [26]

      (26) Yao, Y.; Xu, C.; Miao, S.; Sun, H.;Wang, S. J. Colloid Interface Sci. 2013, 402 (15), 230.

    27. [27]

      (27) Gan, Y. P.; Qin, H. P.; Huang, H.; Tao, X. Y.; Fang, J.W.; Zhang, W. K. Acta Phys. -Chim. Sin. 2013, 29 (2), 403. [甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 物理化学学报, 2013, 29(2) 403.] doi: 10.3866/PKU.WHXB201211022

    28. [28]

      (28) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80 (6), 1339. doi: 10.1021/ja01539a017

    29. [29]

      (29) He, Y. S.; Bai, D.W.; Yang, X.; Chen, J.; Liao, X. Z.; Ma, Z. F. Electrochem. Commun. 2010, 12 (4), 570. doi: 10.1016/j.elecom.2010.02.002

    30. [30]

      (30) Gupta, V.; Kusahara, T.; Toyama, H.; Gupta, S.; Miura, N. Electrochem. Commun. 2007, 9 (9), 2315. doi: 10.1016/j.elecom.2007.06.041

    31. [31]

      (31) Salavati-Niasari, M.; Bazarganipour, M. Transition Met. Chem. 2009, 34 (6), 605. doi: 10.1007/s11243-009-9237-5

    32. [32]

      (32) Ferrari, A. C. Solid State Commun. 2007, 143 (1-2), 47.

    33. [33]

      (33) Tuinstra, F.; Koenig, J. L. The Journal of Chemical Physics 1970, 53, 1126. doi: 10.1063/1.1674108

    34. [34]

      (34) Ferrari, A.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S. Phys. Rev. Lett. 2006, 97 (18), 187401. doi: 10.1103/PhysRevLett.97.187401

    35. [35]

      (35) Kaniyoor, A.; Baby, T. T.; Ramaprabhu, S. J. Mater. Chem. 2010, 20 (39), 8467. doi: 10.1039/c0jm01876g

    36. [36]

      (36) Ramesha, G. K.; Sampath, S. J. Phys. Chem. C 2009, 113 (19), 7985. doi: 10.1021/jp811377n

    37. [37]

      (37) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.;Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45 (7), 1558. doi: 10.1016/j.carbon.2007.02.034

    38. [38]

      (38) Zsoldos, Z.; Guczi, L. The Journal of Physical Chemistry 1992, 96 (23), 9393. doi: 10.1021/j100202a061

    39. [39]

      (39) Khassin, A. A.; Yurieva, T. M.; Kaichev, V. V.; Bukhtiyarov, V. I.; Budneva, A. A.; Paukshtis, E. A.; Parmon, V. N. J. Mol. Catal. A: Chem. 2001, 175 (1-2), 189.

    40. [40]

      (40) Perera, S. D.; Mariano, R. G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K. J. ACS Catalysis 2012, 2 (6), 949. doi: 10.1021/cs200621c

    41. [41]

      (41) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.;Wallace, G. G. Nat. Nano 2008, 3 (2), 101.

    42. [42]

      (42) Sun, H.; Liu, S.; Zhou, G.; Ang, H. M.; Tadé, M. O.;Wang, S. ACS Applied Materials & Interfaces 2012, 4 (10), 5466. doi: 10.1021/am301372d

    43. [43]

      (43) Kusic, H.; Koprivanac, N.; Srsan, L. J. Photochem. Photobiol. A: Chem. 2006, 181 (2-3), 195.

    44. [44]

      (44) Sun, H.; Liang, H.; Zhou, G.;Wang, S. J. Colloid Interface Sci. 2013, 394 (1), 394.


  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    4. [4]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(495)
  • Abstract views(897)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return